数学
高校生
解決済み

この式変形がわかりません
教えてください

重要例題 35 不等式の証明の拡張>①00 > AS |a|<1, |6|<1, |c|<1のとき,次の不等式が成り立つことを証明せよ。 (2) abc+2>a+b+c 基本 27,29 (1) ab+1>a+b CHART SOLUTION 似た問題の管理 ① 結果を使う 解 (1) 答 ② 方法をまねる (1) 大小比較は差を作る方針。 (2) (1) 2文字 (a,b) から3文字 (a,b,c) に 拡張された問題。 ①の方針で,(1) の結果を2回使って証明する。・・・・・・! |a|<1,|6|<1 から |ab|<1であることに注目。 (ab+1)-(a+b)=(6−1)a-(6-1)=(a-1)(6-1) |a|<1,|6|<1 であるから a-1<0, 6-1<0 (a-1)(6-1)>0 すなわち (ab+1)-(a+b)>0 よって したがって (2) |a|<1,|6|<1 であるから |ab|<1 |ab|<1, |c|<1 であるから, (1) を利用して (ab) c+1>ab+c abc +2>ab+c+1 (ab+1)+c>(a+b)+c abc+2>a+b+c ab+1> a+b+8²- よって 口 (1) から ゆえに 別解 (abc+2)-(a+b+c)=(bc-1)a+2-6-c |b|<1,|c|<1 であるから |bc|<1 よって bc-1<0 |a|<1 であるから ゆえに よって |b|<1,|c|<1 であるから ゆえに (b-1)(c-1)>0 したがって 1 MOITUTO TAARO 13 > 54c x+s, ‚s x+xs+x)(st -(sx+x(s+x)} (s- この変形は? [*][0]][sy + f(stw *c すなわち ( bc-1)a>(bc-1)・1 ( bc-1)a+2-b-c>bc-1+2-b-c abc+2>a+b+c 立会 大小比較差を作る ←-1<a<1,-1 <6<1 =(b-1)(c-1) 6-1<0, c-1<0) (ユーマ) - JICLES LIU 「餃子につ ① 結果を使う (1) の不等式でαをabに bacにおき換える。 ab+1>a + 6 の両辺に 加 ■大小比較 差を作る << α< 1 の両辺に負の bc-1 を掛ける。

回答

✨ ベストアンサー ✨

変形というより、(1)で証明した式を利用しているということです.右の方に結果を使うと書いてある通り、置き換えています.

この回答にコメントする
疑問は解決しましたか?