Mathematics
高中
已解決
どうして互いに素であるから3m+2n=1を満たす整数 m,nが存在するとわかるのですか?
どなたか解説お願いします🙏
[22 金沢工大]
mとnが整数のとき,7 +177で表される最小の正の数は
ある。
で
[22 明治大]
m
n
3m+2n
(2)
2
+3
886
JURSS
m, n は整数であるから 3m+2n は整数である。
また, 2と3は互いに素であるから3m+2n=1
を満たす整数 m, n が存在する。一
眼
したがって, 3m+2n の最小の正の整数は1で
mn
CHE
あるから, + の最小値は
2 3
1
(
16回)
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
数学ⅠA公式集
5652
19
なるほど✨確かに互いに素でなかったら共通の数でくくれますね!
理解できました!ありがとうございます