学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

わかる【解放のテクニック】部分の②の甲一人何時間働いたかを確かめる計算式で1-5分の3となっているのですが、なぜ5分の3を引くのでしょうか?具体的に教えて頂けると助かります。

p.114、22日目:仕事算 基本公式に数値を入れて計算する 1日 (時間) 当たりの仕事量 = 所要日数(時間) ●仕事量=1日(時間) 当たりの 仕事量×働いた日数(時間) ●全体の仕事日数 1 = わかる! 解法のテクニック 11人の1時間当たりの仕事量を計算する 基本公式を利用して、 1時間当たりの仕事量== 所要日数(時間) 仕事全体の量を1とすると、1人の1時間当たりの仕事量は 甲 12/21丙115 20 ② 3人での1時間当たりの仕事量を計算する 3人一緒に働くと1時間当たりの仕事量は 210+12+15=1/13 ③全体の仕事時間を計算する 分母を最小公倍数に ここでは分母を60に揃える 基本公式を利用して、全体の仕事時間=1+各人1時間の仕事量の和解答 よって、かかる時間は1÷- = 5時間 5 各人の1日当たりの仕事量の和 ※全体の量から考える場合、 分子が1となる。 残りの量から考 える場合は、1を残りの仕事量に置き換えて計算する。 (2) 3人で3時間働いた後、 残りを甲1人で行った。 甲1人では何時間働きました か。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 わかる! 解法のテクニック 例題 1 13人で3時間働いたときの仕事量を計算 制限時間: 150 秒 3人で3時間働いたときの仕事量は×3時間= ある仕事をするのに甲1人では20時間、 乙1人では12時間、 丙1人では15時間か かる。 (1)3人同時に働いたら、 仕事は何時間で終わりますか。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 甲1人で行ったのは1 -号=号 ② 甲1人で行った時間を計算 仕事量 基本公式を応用して、 残りの仕事時間=残りの仕事量 甲1時間の仕事量 だから、10+20=8時間 解答 2番目の公式の応用

未解決 回答数: 1
数学 大学生・専門学校生・社会人

整数の問題です。play2の?がふってある部分について、いまいち何を言ってるのかよく分かりません…。もう少し噛み砕いて教えて頂くことはできますか?😭😭

77 特別区Ⅰ類20 PLAY 2 最大公約数と最小公倍数の問題 3つの自然数 14, 63, n は、 最大公約数が 7 で、 最小公倍数が882である。 nが300より小さいとき、 自然数nは全部で何個か。 1. 218 2. 318 最大公約数や最小公倍数の性質は理解できたかな? 3. 418 14 = 7 x 2 63=7 n = 7 882 = 7×2×32×7 72×2×32 は300より小さい自然数であることを、しっかり頭に入れて解きましょう。 14,63, n の最大公約数が 7 なので、 n は 7 を約数に持つ、 つまり、7の 倍数ですから、n=7m (mは整数) とおきます。 ×32 4. 518 また、 14 = 7 x 2.63 = 7× 32 ですから、これらを次のように並べ、最 小公倍数が882 = 2 × 32 x 72 になることを考えます。 xm ← -最小公倍数 最小公倍数の 882 は、 14,63, nのすべてで 割り切れる最小の数ですから、これらの数の素因 数 (素数の約数) をすべて含んでいることになり ますね。 しかし、 14, 63 の素因数に 「7」は1つしか ありませんので、最小公倍数 882 の素因数に 「7」 が2つあるということは、nの素因数に 「7」が 2つあることになります。 そうすると、とりあえず、m=7 であれば、 n=7×7となり、 条件を満たすことがわかり ますが、 m には、 その他の 「2×32」の全部ま たは一部が因数に含まれていても、 最小公倍数は 変わりませんので、n は次のような数が考えられ ます。 そうなの?? 5. 618 ない 71882 71126. 2118 319 3 たとえば、 6と9の最小公 倍数 18 は、次のように、 それぞれの素因数をすべて 含む最小の数だよね。 6=2x3 9 = 3×3 18=2×3×3 たとえば、n=7²×2× 3294 とかでも、次の ように素因数は882に含 まれるでしょ!? 14 = 7×2 63 = 7×32 294 = 7²×2×3 882=7²×2×32 m = m m m m m 4 正解

解決済み 回答数: 1
1/5