学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

やさしい理系数学例題3(2)整数分野の証明問題です。 模範解答の意味は理解できますが、16で割ったあまりで分類しようと考えるに至る過程がわかりません。

あり、その最大数はab である。 この定理について興味のある方は, 「ハイレベル理系数学」の例題3と演習問題 14 を参照されたい. 例題 3 正の整数a,b,cが a+b2=c2 をみたすとき,次の (1), (2), (3) を証明せよ . (1) a, b のいずれかは3の倍数である. (2) a,b のいずれかは4の倍数である. (3) a,b,cのいずれかは5の倍数である. 考え方 任意の整数は, 3m, 3m±1 (mは整数) などの形で表せる. 【解答】 (1) 任意の整数は3m,3m±1 (m∈Z) のいずれかの形で表せ, (3m)2 = 0, (mod3) (3m±1)²=1. よって, a, b がともに3の倍数でないとすると, ∫(a2+62)÷3の余りは,2 lc²÷3の余りは, 0,1 であるから, a2+b2=c2 となり矛盾. ゆえに,d2+b2=c2 のとき, a, 6 のいずれかは3の倍数である. (2) 任意の整数は 4m, 4m±1,4m+2 (mez) のいずれかの形で表せ , (4m)²=8.2m² = 0, (4m±1)²=8(2m²±m)+1=1,9, (mod16) (4m+2)^2=8(2m²+2m)+4=4. よって, a, b がともに4の倍数でないとすると, 背理 (a²+62)÷16の余りは, 2, 5, 8, 10, 13 lc²16の余りは, 0, 1,4,9 (5m)2 =0, (5m±1)' = 1, (mod5) (有名問題 ) (5m±2)²=4. よって, a,b,cがすべて5の倍数でないとすると, (終) なぜood 16 で分類しょうと 考える 光に平方数で割った余りを であるから, a+b2=c2 となり矛盾. ゆえに,a+b=²のとき, a,b のいずれかは4の倍数である. (3) 任意の整数は 5m,5m±1.5m±2(m∈Z) のいずれかの形で表せ, (終)

未解決 回答数: 1
1/5