学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

21番の問題です❕ なぜ表1枚、裏1枚と1個のものでなく分けて考えるのでしょうか、、 全部でx✖️2➕2xとなる意味がわからないです😭 来週試験なのでなるはやでお願いしたいです🙇‍♀️

214 判断推理 解説 表裏とも赤のカードをx枚とすると, 表赤・裏白のカードは2x枚と 表せる。 ここで,表を1枚, 裏を1枚と考えると, 赤のカードは全部でx×2+ 2x = 4x 〔枚〕 ある。 すると、実際の赤のカードの枚数は35+49 = 84 〔枚〕 なので, 4.x = 84 x=21 よって、表裏とも赤のカードは21枚になる。 表・裏白のカードは2×21=42 〔枚〕 なので, 表裏とも白のカードは100-21-4237 〔枚〕 となる。 以上より, 正解は4。 225 解説文字数を見ると、 「桜」は,平仮名では「さくら」の3文字であり, ローマ字では 「SAKURA」 の6文字である。 「富士」は,平仮名では「ふじ」 の2文字であり, ローマ字では 「FUJI」の4文字である。 「梅」は,平仮名で は「うめ」の2文字であり, ローマ字では「UME」 の3文字である。 暗号の数字のかたまりと対比させると,「桜」 が6個, 「富士」 が4個, 「梅」が 3個だから, 数字のかたまり1個はローマ字におけるアルファベット1文字に 対応していると考えられる。 このとき、数字のかたまりの順番とアルファベットの順番が同じであると て対応させてみると, 「SAKURA」 が 「10010-0-1010-10100-10001-0_ 「FUJI」が「101-10100-1001-1000」, 「UME」 が 「10100-1100-100」となり 複数回出てくる 「A」が「0」, 「U」 が 「10100」 に矛盾が生じない。 よー 数字のかたまりの順番とアルファベットの順番は同じであると考

未解決 回答数: 1
数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1
化学 大学生・専門学校生・社会人

この問題のマーカーより上は理解できたのですがマーカーから下がなぜそのような式になるのかわかりません。教えててください🙇‍♀️

1 水銀柱 に相当 と表し D じ # 62 (1) 6.5×10 Pa (2) ①1.4×10-mol ② 1.5×102mol ※① 解説 (1) メタン (分子量16), 空気 (平均分子量 28.8) はそれぞれ 0.32 16 =0.020 (mol), 空気: -=0.40(mol) 空気の体積比はO220%, N2 80%であるから, O2 は 0.080mol, N2 は 0.32molo CH + 2O2 → 0.080 -0.040 0.040 11.52 28.8 CO2 + 2H2O 0 0 +0.020 +0.040 0.020 燃焼前 0.020 変化量 0.020 燃焼後 0 気体の総物質量は 0.040+0.020 +0.040+0.32=0.42(mol) pV=nRT より, px ( 2.00+30.0) = 0.42×8.31×10°× ( 327+273) 2.00 30.0 67+273 17+273 p = 6.5×10^(Pa) (2) H2O 以外の気体は変化しないので, H2O0.040mol についてのみ考 える。 AとB内の H2O の分圧 PH2O は等しく, A内とB内の H2O *24 (気体) の物質量をそれぞれ na, NB (mol) とすると, 物質量の比は次 のようになる。 : N2 0.32 (mol) 0 (mol) 0.040 0.32 (mol) ≒1.5×10 (mol) na: NB= =29:510 (i) A内とB内ともにH2Oがすべて気体として存在すると仮定する と A内の H2Oの分圧 DA は, pax 2.00=0.040x 24 px = 3.04×103 (Pa) B内の H2O の分圧も同じ圧力になるが, 17℃の飽和水蒸気圧 29 29+510 - ×8.31 ×103 × ( 67+273 ) (1.94×10 Pa) を超えるので, 仮定は矛盾している。 B内では液 体の水が存在する。 (ii) A内はすべて気体, B内は気液平衡の状態と仮定すると, B内は 17℃の飽和水蒸気圧で, A内のH2Oの分圧も同じ蒸気圧である。 67℃の飽和水蒸気圧 (2.70×10' Pa) を超えないので, A内はすべ て気体で存在する。 仮定は正しい。 1.94×10²×2.00=nx 8.31×103 × ( 67 +273) na=1.37…×10㎡≒1.4×10-3 (mol) 1510 nB = 1.37×10-3× -=2.40...×102 (mol) 29 液体として存在する水の物質量 n は , n=0.040-na-nB=0.040-1.37×10--2.40×10-2 空気は O2 (分子 (分子量28) が 20 の混合気体で. 分子量 (平均分 32x 20 100 =28.8 n= ・+28× A内とB内に不 ついて DV=nRT RT 気体の物質量 し, Tに反比

回答募集中 回答数: 0
1/8