数学
高校生

(1)はなぜこのように場合分けするのでしょうか、また(2)のグラフはどのように書かれたのかがわかりません💦この範囲が苦手なので詳しめに教えていただいきたいです🙇‍♀️🙇‍♀️

(36 6を実数の定数とする。ァの関数 プ(*) = |>ー2z| の 0ミャミ1 におけ る最大値を 47 とおく。以下の問に答えよ。 (1) 47 をを用いて表せ。 (2) の値がすべての実数を変化するとき, /7 の最小値を求めよ。 (09 岐阜大)
列 則0 ミァ1の位置関係で場合分けをしま 6>0 のとき 0ミz<2gでは 7(⑦=ーxrー29) srてgd 7の=xc-の まず, xxー22) の *こ2 を解く。 ダー2gz一の =0 よって =(1+72 )4 ia
1= のとき ター ーーg| 1 ra 4s1s(1+73)e のとき 3-1szsi ダー7の=ーデ d+75z (G+ =1 のとき 0<c 75ー1 であり ダニ7① で< ラー1 のとき ルーュー2o 7 -1scs1のとき リーの ce1のとき ニー2g-1 の 次のグラフより, gニイラー1 のとき最小 値3一272 をとる。 27(え鹿 すべでの。r ENWLて 7 <) とは 9 の大<760 の最尊 ということで し <gGO のをき 計れeれミーディeete ょて 科-at1<e PR ーラ=ェェ2 のをきん6 <0 となるが 5人G。 GO の 2=ェミラ におりる最 人REなるととでちちちら 40 =ューc<o PP ー2 =s<2 のとき. (⑮ニ(s+3ゲ一8 の値尋 なー9=70=7の よって -7s70m ー3=r= のka 0 ーー Me の=の sg② ょって eteseのsmTe すべでの=にして79 く90 がりつ たらの6は、 ⑤) の最大領 < 9( の最小値 であるから lete したって a> 28(m 数opthえK 志ん 1であうまく抽みわせて導き換えの できる形に展開し, 2 次式として扱います。 トー」 プア⑦ゆ= EzGーめHUGー3) ーー4s)(デー和8) デー4zニX とおく。 7の= XX+9 =*r+sX=(X+ 41

回答

まだ回答がありません。

疑問は解決しましたか?