数学
高校生
解決済み

赤線で囲った部分の計算の仕方が分かりません!誰か教えてください🙇‍♀️

Ra を数学的帰納 が成り立つ。 一べての自然 は ドミノ倒 る。 割れる。 れたとき, が倒れる。 ミノが倒れ 基本 BANN 55 等式の証明 ......- が自然数のとき,数学的帰納法を用いて次の等式を証明せよ。 ·+n•n!=(n+1)!−1 解答 指針 1・1!+2・2!+ 00000 499 数学的帰納法による証明は,前ページの例のように次の手順で示す。 [1] n=1のときを証明。 [2] n=kのときに成り立つという仮定のもとで, +1のときも成り立つことを証明。 [1] [2] からすべての自然数nで成り立つ。 出発点 [類 早稲田大] p.498 基本事項 まとめ [2]においては, n=kのとき①が成り立つと仮定した等式を使って, ① の n=k+1 このときの左辺1・1!+2・2! +・・・・..+kk!+(k+1) ・(k+1)! が, 右辺{(k+1)+1}!-1に 等しくなることを示す。 また,結論を忘れずに書くこと。 とき [1] n=1のとき=31-9 通 (左辺)=1・1!=1, (右辺)=(1+1)!-1=1 よって,①は成り立つ。 ①が成り立つと仮定すると [2]n=kのとき, ①が成り立つと仮定すると 1・1! +2・2! + ••••••+kk!=(k+1)!−1 n=k+1のときを考えると、②から 1.1!+2.2!+...+k•k! +(k+1). (k+1)! 注意 は数学的帰納法 の決まり文句。 答案ではき ちんと書くようにしよう。 kは自然数(k≧1)。 1 ⑥数学的帰納法 <①でn=kとおいたもの。 n=k+1のときの ① の 左辺。 とき =(k+1)!-1+(k+1) ・(k+1)! ={1+(k+1)}(k+1)! -1 えに=(k+2)(k+1)!-1=(k+2)!-1 ={(k+1)+1}!-1n=k+1のときの①の よって, n=k+1のときにも①は成り立つ。 [s [1], [2] から, すべての自然数nについて①は成り立つ。結論を書くこと。 8.0+(+81) トー +1 検討 数学的帰納法では,仕組み (流れ)をしっかりつかむようにしよう(指針の[1][2])。 なお,[1] で n=1の証明が終わったと考えて, [2] でn=kの仮定を k≧2 としてしまって は誤りである。 注意するようにしよう。 bon 24667 (El bom) of (81 bom) "E-EI="@+E+A 数学的帰納法を用いて次の等式を証明せよ。 [島根大]

回答

疑問は解決しましたか?