数学
高校生
解決済み

微分の問題で、赤の波線〰️がどうして成り立つのか分からないです教えてください🙏🏻🙏🏻

不等式への応用 405 例題 215 3本の接線が引けるための条件 (2) **** 点P(a, b) から曲線 y=x2x に異なる3本の接線が引けるとき,点 P(a, b) の存在範囲を図示せよ. 020 考え方 曲線上の点(t-2t) における接線の方程式に (a, b) を代入した3次方程式が異 なる3つの実数解をもつための条件をa,bに関する不等式で表す。 SiS ■解答 y=x-2x より, y'=3x²-2 01 S>0203)|1=8200 したがって,曲線上の点(t, f-2t) における接線の方程 BO式は、 y—(t³—2t)=(3t²-2)(x-t) つまり,y=(3-2)x-2t この直線が点P(a, b) を通るので, 0800802021=0000 2-1-07 より b=(3t-2)a-2t3 をもつので 2t3-3at +2a+b=0 …① 0<(1415)-(+ tの方程式 ①が異なる3つの実数解をもつような (a, b) の条件を求める. f(t)=2t3-3at+2a+b とおくと, したがf'(t)=6f2-6at=6t(t-a) '=0 とすると, t=0, a したがって, ① が異なる3つの実数解をもつのは、 y=f(t)のグラフがt軸と異なる3点で交わるときより a\0 かつ f(0)f(a)<0 www f(0)f(a)=(2a+b) ( -a +2a+b) <0 より, 002a+b>0 1-a+2a + b < 0 SWAROV[b>-2a 1-a³+2a+b>0 fb<-2a (b>a³-2a f2a+b< 0 または つまり, または lb<a³-2a また-2a=-2a より bab=a3-2a a³=0 より、直線 b2a は 次方曲線 b=α-2a に原点で接 している. √2 a そよって求める領域は, - 右の図の斜線部分で,境 a>0のとき +f(0)>0 A 0 a f(a)<0 a< 0 のとき f(a)>0 t N f(a) f(0) が異符号 a=0 のとき, f(0)-f(a) ={f(0)}'0 より, a≠0 は f(0)f(a)<0 に含ま れている. 界線は含まない . OSEO 原点で接する. b=-2a すると、 (+ 第6
微分

回答

✨ ベストアンサー ✨

aが0だとそもそも問題として成り立たないのは自明で、2個目は、極大と極小がないと共有点3個持たないやん?で、その時、極大と極小が+と−の関係じゃないとダメなのはこのレベルまでいってたら習ってるはず。そしたら+と−かけたら負になるからこの条件が必要。
文字で起こすとわかりにくいから、わかんなかったらまた言ってください

限界jk

めっちゃ分かりましたありがとうございます

🩰torowa✨

よかった!

この回答にコメントする
疑問は解決しましたか?