数学
高校生
解決済み

解説お願いします。
(2)の問題で、12C3になる理由が分かりません。
分かりやすく教えていただけると嬉しいです。

重複組合せ A, B, C, D の4種類の缶詰を合わせて9個買うとき, (1)それぞれの缶詰を少なくとも1個は買う場合, 買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか。 種類ごとにまとめて並べる (産業無料) 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 理するとしたら, 多くの人が「左から A, B, C, Dの順に,同じ種類の缶詰をまとめて並べる」とする のではないか. 例えば,Aを3個, Bを4個, Cを1個, Dを1個なら AAABBBBCD となる. そして、 この文字列は, AとBの境, BとCの境, C とDの境が決まれば決まる (復元できる). AAABBBBCD ← 000100001010 つまり右のようにA~D を◯, 境を仕切りで表せば,9個の○と3個のの並びと対応する . (1)は, 仕切りが両端にはなく,かつ隣り合わない. (2) は並び順は自由である。 このような○とい の並べ方の総数を求める. 解答 (1)○を9個並べておき,○の間(図の↑)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順にA, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 8.7.6 3.2 の数は仕切りの位置の選び方と同じで, 8C3= ↑↑ 00|000|0|000 A B C D =56(通り) (2) ○を9個を3個, 横一列に自由に並べ, で区切られた4か所の○の 個数 (○がないところは0個)を左から順にA, B, C,D の個数とする. この並べ方と題意の買い方は 000||00|〇〇〇〇 ABCD 買い方を決めれば仕切りの ←が決まる。 仕切りの位置 ば違う買い方と対応する。 12・11・10 対応するから,求める場合の数は, 9+3C3= =220 (通り) 3.2

回答

✨ ベストアンサー ✨

9個の区別できない○と3個の区別できない|、
計12個のものを1列に並べる方法です

方法①
同じものを含む順列というやつで、公式通り
12!/9!3! = 12×11×10/(3×2×1) = 220

方法②
12個の○と|を格納する12個の箱を1列に並べておきます
1個の箱に、1個の○か|が入ります
12個の箱のうち、どの3個に|を入れるかを選ぶ方法が
12C3です
で、3個を決めると、自動的に残り9個には○が入ります
だから、12C3だけで終わりです

淳華

理解出来ました!
ありがとうございます!

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉