数学
高校生
解決済み

検討の部分の、不等号に=を含む含まないは毎回確認しなければいけないのですか?
それとも何か他に簡単にわかる方法はあるんですか?

O -3y C ならば ると、不 わる。 たらば 基本例題 33 不等式の性質と式の値の範囲 (2) x,yを正の数とする。 x, 3x+2y を小数第1位で四捨五入すると,それぞれ6, 21 になるという。 (1) xの値の範囲を求めよ。 (2) y の値の範囲を求めよ。 まずは、問題文で与えられた条件を, 不等式を用いて表す。 指針 例えば,小数第1位を四捨五入して4になる数αは, 3.5以上 4.5未満の数であるから, aの値の範囲は 3.5 ≦a <4.5である。 (2) 3x+2yの値の範囲を不等式で表し, -3xの値の範囲を求めれば,各辺を加えるこ とで 2y の値の範囲を求めることができる。 更に, 各辺を2で割って, yの値の範囲 を求める。 |解答 (1) x は小数第1位を四捨五入すると6になる数であるか 5.5 ≦x<6.5 (2) 3x+2y は小数第1位を四捨五入すると21になる数で あるから 20.5≦3x+2y<21.5 ① の各辺に-3を掛けて -16.5≧-3x > -19.5 -19.5<-3x≦-16.5 (2) すなわち ②,③の各辺を加えて (Q) 20.5-19.5 <3x+2y-3x<21.5-16.5 したがって 1<2y<5 (*) 01 各辺を2で割って12/2<x<1/2 (3) ▲5.5≦x≦6.4, 5.5≤x≤6.5 などは誤り! 3x+2y-3x<21.5-3x 21.5-3x≦21.5-16.5(=5) ・基本 32 負の数を掛けると, 不等 号の向きが変わる。 不等号に注意 (検討参照)。 正の数で割るときは, 不 等号はそのまま。 不等号にを含む・含まないに注意 |検討 上の2yの範囲(*)の不等号は,≦ではなくくであることに注意。 例えば、右側について は ② の3x+2y<21.5 から ③の-3x≦-16.5 から よって 3x+2y-3x<21.5-3x≦5 したがって, 2y < 5となる (上の式の で等号が成り立たないから, 2y = 5とはならない)。 左側の不等号についても同様である。 AC 練習 x,yを正の数とする。 x, 5x-3y を小数第1位で四捨五入すると,それぞれ 7, 13 ③ 33 になるという。 O 1 章 4 1次不等式

回答

✨ ベストアンサー ✨

毎回確認します
確認というより一瞬気をつけるような感覚でしょうか

Mizuki

回答ありがとうございます(..)"

この回答にコメントする
疑問は解決しましたか?