数学
高校生

②でなんで①みたいに範囲がX>0じゃないんですか?

基本例 例 次の方程式を解け。 (1) (logs.x2logsx=3 183 対数方程式の解法(2) 解答 (2) log2x+610gx2=5 指針 対数方程式には、基本例題 182 で扱ったタイプ以外に, (1) のような logax に関する2次方程式になる ものもある。 また, (2) の方程式を変形していくと, (1) と同様の2次方程式が導かれる。 なお, (2) では、底にも変数xがあるから, 真数>0だけでなく、 「底> 0, 底=1」 の 条件の確認も忘れずに! (1) 真数は正であるから x>0 ****** ① 方程式から (logax+1) (logsx-3)=0 よって logsx=-1,3 logsx-1から logsx=3から x=27 これらのxの値は ①を満たす。 x= ゆえに,解はx=1/13,27 (2) 真数は正で、 底は1でない正の数であるから 0<x<1,1<x ① ****** このとき、 方程式の両辺に logzx を掛けて (logzx)2 +6=5log2x (logsx)^2 -5log2x+6=0 (log2x-2) (log2x-3)=0 log2x=2,3 整理して ゆえに よって logsx=2 から x=4 10gzx=3から これらのxの値は ①を満たす。 ゆえに、 解は ****** B 00000 x=8 x=4,8 基本 182 演習 194 <log.x=t とおくと、方程 式は 1²-21-3=0 よって (t+1)(-3)-0 logsx-log 1/3 として x=1/13 とするか、または この問題では、底の条件 は真数の条件を満たす <x*1から log x+0 底の変換公式により loga2 logx2= logax logax よって logaxlog.2-1 Blogxx=t とおくと P-51+60 よって (12) (1-3)=0

回答

まだ回答がありません。

疑問は解決しましたか?