数学
高校生

波線引いているところで、bnをなぜan-1とおくのかわかりません!もう少し詳しく教えてほしいです🙇🏻‍♀️

例題 297 漸化式 思考プロセス d1 = 5,/an+1 般項を求めよ。 例題 296 既知の問題に帰着 3a-2 例題296 で学習した, (ア) 等差型, (イ) 等比型, (ウ) 階差型 のいずれかに変形することを考える。 an+1=3an-2 = 3a - 2 an+1-α=3(an-α) a an-α = bn とおくと) \an+1-α=bn+1 解 漸化式 αn+1=34-2は, α = 3α-2 を満たす解 α = 1 a を用いて変形すると Anel-1304-3 ・・・) で定められた数列{an}の一 bn+1=36m (イ) の形 Action» 漸化式 ant) = p@a+αは、 特性方程式xp+g の解を利用せよ 12, = an+1=1=3(an-1) ここでbn=an-1 とおくと よって, 数列{bn} は初項b1=α1-1 = 4,公比3の等比数 1, 2 列であるから bn = 4.3"-1 an=bn+1=4・3"-1 +1 したがって 〔別解) ・② ... ant! bn+1=36 3au 3091 an+1=3an-2① において、辛出会 nをn+1に置き換えると an+2 3an+12 ①,②の辺々を引くと an+2an+1 = 3 (an+1-an) ... 3 数列{an}の階差数列を {bn} とすると,③ bn+1 = 3bn よって, 数列{}は初項8 の (ア) an+1=an+d (イ) an+1=ran (ウ) an+1=an+f(n) ^èmo. Ibn = An − 1 kh an = bn +1 8+n8=E (1-2) an a=3α-2 をもとの漸化 式の 特性方程式 とよぶ。 p.523 Play Back 32 参照 特性方程式を用いて, 化式を変形したときは 展開してもとに戻ること を確認するとよい。 S 3+1 = (8-AS) 階差数列を利用した {an}の階差数列{bmi すると bn=an+1 と間道 bn=an-an-1 ないように注意する。 13 £
漸化式

回答

まだ回答がありません。

疑問は解決しましたか?