x³=1とおいて求められるxが1の3乗根である。
(x-1)(x²+x+1)=0より、
x=1,(-1±√3i)/2
よって、一方の虚数の解を
ω=(-1+√3i)/2
とおくと、
ω²=(1-2√3i-3)/4=(-1-√3i)/2
よって、これはxのもう一方の虚数解であるから、
1の3乗根は、1、ω、ω²である。
⑵
x²+x+1=0の方程式の解が、
x=ω,ω²であったので、
x=ωを代入した、
ω²+ω+1=0
は成り立つことが分かる。
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6065
51
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4871
18
詳説【数学B】漸化式と数学的帰納法
3186
13
詳説【数学B】いろいろな数列
3162
10