数学
高校生
数2の図形と計量の問題です。
ハイライトしたところがわからないです。
どのように不等式を解いたらk<-√2,√2<kになるのか教えてほしいです。
お願いします
円x2+y2=1と直線y=x+kが共有
点をもたないとき,定数kの値の範
囲を求めよ。 [3点]
[x2+y²=1
(x² + 3
=x+k
2x²+2kx+k2-1=0
この2次方程式の判別式をDとすると
=k²2(k²-1)==k² +2
円と直線が共有点をもたないための必要十分条件は、 D<0であるから ^+2<0
この不等式を解いて
k<-√2, √2 <k
連立方程式
******
において、②を①に代入して整理すると
(2)
******
D
-
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8612
115
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
5864
22
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
5823
51
詳説【数学A】第2章 確率
5724
24
数学ⅠA公式集
5331
17
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5017
17
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4717
18
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4434
11
詳説【数学A】第3章 平面図形
3522
15
詳説【数学Ⅰ】第三章 図形と計量(後半)~正弦・余弦定理~
3451
10