数学
高校生
解決済み
(1)の問題の解説で、、
D<0になるのかが分かりません…解説お願いします🙇🏻♀️
3 [4プロセス数学Ⅰ 実践演習29(月)180実
2つの2次関数f(x)=x2+2ax+25, g(x)=-x2+4ax-25
がある。
(1) どんなxの値に対しても, f(x) > g(x)が成り立つような定数aの値の範囲を求めよ。
(2)どんなx1, x2 の値に対しても, f(x1) > g(x2) が成り立つような定数aの値の範囲を
求めよ。
es
7
7
-}/{sas²}}
S
[1]~[3] から
29 (1) f(x) > g(x) から
x2+2ax+25>-x2+4ax-25
すなわち
x2-ax +25> 0
2次方程式x2ax+25=0の判別式をDとする
と
D=(-a)²-4・1・25=α²-100
よって,どんなxの値に対しても, f(x) > g(x)
が成り立つのはD<0のときである。
すなわち
a²−100<0
したがって
-10<a<10
(2) どんな x1, x2 の値に対しても, f(x1) > g(x2)
が成り
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6085
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6079
51
詳説【数学A】第2章 確率
5840
24