そのパターン分けのことを対数における真数条件といいます。
確かに、真数条件を書かなくてもいい問題もあると思いますが、
これは、かなり重要なポイントです。
今後、数学で出てくる三角関数の積分やら微分方程式などで、
その条件について同じように書かないといけないのですが、
たいてい、絶対値を付けてlog|x|のように、
書いているケースが多いですね。
これなら、logの中身は絶対正になりますから。
特にないと思います。
logの問題について
方程式を解く問題で、真数は正であるからX>0っていう式を書く問題と書かなくていい問題があると思うんですけどその問題の違いってなんですか?
語彙力なくてすみません
そのパターン分けのことを対数における真数条件といいます。
確かに、真数条件を書かなくてもいい問題もあると思いますが、
これは、かなり重要なポイントです。
今後、数学で出てくる三角関数の積分やら微分方程式などで、
その条件について同じように書かないといけないのですが、
たいてい、絶対値を付けてlog|x|のように、
書いているケースが多いですね。
これなら、logの中身は絶対正になりますから。
特にないと思います。
この質問を見ている人は
こちらの質問も見ています😉
書いたら不正解になることは無いですよね?
解答にX>0がかかれていなくても