数学
高校生

この問題なんですけどなぜ途中式で
10:6=5:3 よってDC=分数になるんですか??

EX 49° AB=4, BC=5, CA=6 である △ABC において, ZAおよびそのが 二等分線が直線BC と交わる点を, それぞれ D, Eとする。i 354 会角形の角の二等分線と比 三角形には, 重号 この重要な点 AB=10, BC=5, CA=6 である△ABC におい て, ZAおよびその外角の二等分線が辺BCまた はその延長と交わる点を, それぞれ D, E とする。 このとき,線分 DE の長さを求めよ。 基礎例題49 ら。 10" 三角形の D Piay Back 中学 B CHARI QGUIDE) 三角形の角の二等分線と比 (線分比)=(2辺の比) 三角形の3辺の垂 定理3 三角形形 1点で [図 1] ADは ZAの二等分線 [図1] 内角の二等分線の定理 BD:DC=AB:AC [図 2] AE は LAの外角の二 等分線 → 外角の二等分線の [図2] A iの食代 A A この三角形の3辺 いい, 外心を中心 [定理3の証明] の交点をOとす 定理 B D CB C BE:EC=AB:AC を利用する。 日解答田 よって OB AD は ZAの二等分線であるから ゆえに,点Oは BD:DC=AB:AC したがって,A ゆえに BD:DC=10:6=5:3 3 DC= 5+3 よって 3 15 I三角形G -BC= -×5=- 8 8 -10、 6. また, AE は ZAの外角の二等分線で B B D 5 あるから BE : EC=AB: AC Piay Back のゆえに BE:EC=10 :6=5:3 中学 C よって BC:CE=(5-3) : 3 10- C B =2:3 CE-ac-3- B 三角形の3つの内 ゆえに "E 6 =BC= 2 15 ×5= -10 定理4 三角形 2 -3BC=2CE したがって 2 DE=DC+CE 1点で 15 15 8 75 2 8 この三角形の33 といい、内心を中 求めよ。 機分DEの

回答

疑問は解決しましたか?