Mathematics
高中
(3)の
側面の△ABCは辺の長さが√2,√2,2
になる理由が分かりません。教えてください。
51
△ABCがあり、Gは重心である。 直線 AG と辺BCの交点をD, 直線BG と辺CA の交点をE, 直
線 CG と辺AB の交点をFとする。
(1) EF=
ア
イ
難易度★
BCであり、(△EFGの面積)
=
目標解答時間
19分
エオ
(2) 点Eを通り ADに平行な直線と辺BCの交点をHとする。このとき BH: HC カ : キ
ある。 ただし、
カ : キ は最も簡単な整数比で答えよ。
(△ABCの面積)である。
で
また,線分 EH と CG の交点をIとすると, (ACE の面積)
(△ABCの面積)である。
(3) △ABCを1辺の長さが2の正三角形とする。 線分EFを折り目として, △AEFを折り返し,
すい
∠AFB=∠AEC=90°になるようにする。 このときできる四角錐ABCEF の表面積は
サ +₁
である。
✓ク
(配点10)
12)
(3) 側面の △ABF, △ACE は ∠AFB=∠AEC = 90° 辺の長さがと
もに112の直角二等辺三角形であるから
********
(△ABF の面積) = (△ACE の面積)=1/12/11
側面の △ABC は辺の長さが2√2,2より,
Point
/12/2
∠BAC=90°の直角
二等辺三角形であるから(△ABCの面積)=1/12/12√2=1
残りの側面の△AEF の面積と底面の台形 BCEF の面積を足したものは
もとの△ABCの面積であるから、求める表面積は
2×1/2+1+
+1+1/1・2・2sin60°=2+√3
そも
解答
尚無回答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6085
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6079
51
数学ⅠA公式集
5656
19