Mathematics
高中

積分の問題です。

黄色マーカーで引いたところの解説をお願いします

基礎問 220 第6章 積分法 120 回転体の体積 (V) 曲線 y= (vi-va) (x≧0, a>0) について,次の問いに答えよ. (1) この曲線のグラフをかけ. (2) この曲線と y=α によって囲まれた部分を直線y=a のまわりに 1回転してできる体積を求めよ. (1) 75 をもう一度読みかえしてみましょう. 今回は, 極値 を求める必要がありますから, y' は因数分解することになります. .......... それならば,このまま微分した方がよいでしょう. (2)今まで学んだ回転体の体積は、回転軸がx軸かy軸でした。今回は、y=a です.いったいどのように考えればよいのでしょう。 目標は, 「回転軸をx 軸に重ねる」ことです. 精講 (1) x>0 のとき y'=2(√x - √a). (√x - √a)=x^² (√x - √a) 1-√a =1- 解答 x→+0 ->0 I √a 2x√x よって, グラフは下に凸で,増減は表のようにな り, limy'=-8, limy =∞ よりグラフは右図. 218 0 ... a y' 4 a 0 + V 20 (2) 曲線と直線y=α の交点のx座標は (√x - √a)² = a√x - √√a = ± √a √x=0, 2√a :: x=0, 4a 8/4 a 10 x=0のとき、 y'の分母= 0 となるので a 注 limy' を調べているのは, y' が x=0 で定義されていない, すな x→+0 わち, 微分可能でないからです. このことは, グラフにおいて点 (0, a) でy軸に接するようにかかれている部分でいかされています。 IC 求める体積Vは〈図Ⅰ>の斜線部分を直線y=a のまわりに回転させ! た立体の体積だから、この図形を軸の正方 向に-4だけ平行移動した <図II〉の斜線部 (141) 分をx軸のまわりに回転すればよい。 "". V=1 = πf^^{(√x - √a)²-a³dx = n₁²(x-²√a √x)²dx 演習問題 120 *4α = nſ₁² (x² − 4√a x² + 4ax) dx ポイント x³ 8√a 5 5 8.25 = π[3³ = nα² (43 4³ 242 15 = ・+2・4 5+2.4²) -ла³(10-24+15) -x²+2ax² πa³ 14g YA 0 a 221 32 15 数学ⅡI・B48 ポイントによれば, 平行移動の公式は次の通り。 注 y=(√x-a-a y=f(x) をx軸の正方向にp,y軸の正方向に qだけ 平行移動すると, y-q=f(x-p) となる. Anx 回転軸がx軸やy軸でないとき, 平行移動して回転軸を軸や軸に重ねる (1411) 4 エ y=cosx のグラフと, 点 (0, 1) と点 (2m, 1 ) を結ぶ線分で囲ま れた領域を直線y=1のまわりに1回転してできる立体の体積V を求めよ. 79 第6章

解答

尚無回答

您的問題解決了嗎?