Mathematics
高中

どうやって解きますか?

(6))x2 - (a-1)x-a

解答

2つ以上の文字を含む因数分解ではじめに考えることは、「最も次数の低い文字について整理する」ことです。
まずは展開してみましょう。
x^2-ax-x-a
xについてはx^2があるため2次ですが、
aは1次式です。
そのためaについて整理すると
-(x+1)a+(x^2+x)
=-(x+1)a+x(x+1)
となり、共通する部分(x+1)が出てきたのでそれでくくると
(x+1)(x-a)
と答えが求められました。

1つの文字で2次式の場合
①共通因数
→②公式{(a+b)^2=a^2+2ab+b^2など}
→③たすき掛け
の順に考えるのがよいでしょう。

2つの文字ならば
①公式・たすき掛けが使える形か判断し使えるなら使う
②どちらも出来なければ、最も次数の低い文字があればその文字で整理
→③最も次数が低い文字が2つ以上あればそのどちらかについて、降べきの順に整理
→④もう一度公式やたすき掛けについて見てみる

また、4次式などになっていた場合
たとえばx^4+px^2+qのような複2次式は
(x^2+△)-(□x)^2の形に変形することを最初に考えましょう。

留言

こうなると思いますー!!
見づらかったら教えてください🙌🙌

留言
您的問題解決了嗎?

看了這個問題的人
也有瀏覽這些問題喔😉