学年

質問の種類

資格 大学生・専門学校生・社会人

これの18,000の所あるじゃないですかこれは どうやって18,000と出たのでしょうか?非支配株主持分です。 どの数字を足せばいいのか教えて頂きたいですよろしくお願いします🙇‍♀️

(解答) 連結精算表 個別財務諸表 P 社 S 修正 ・消去 科 社 借 (単位:千円) 方 貸 現売商一貸 未 貸借対照表 金 方 連結財務諸表 第2問対策 預 ## 1+ 収 S社株式 金金品金益地式ん 22,650 22,060 54,000 28,000 8,000 44.710 40,000 16,640 74,000 800 14,000 10,000 55,840 150 4,000 100 16,000 3,000 50 1,000 23,200 18,000 23,200 ん] 4,000 400 れ t 3,600 資産合計 170,000 69,700 4,000 43,500 200,200 未払費 資 本 金金用金金金 掛入 買 22,800 13,600 8,000 28,400 金 8,000 10,000 10,000 8,000 100 100 金 112,000 24,000 24,000 112,000 資本剰余金 8,000 6,400 6,400 8,000 利益剰余金 19,200 15,600 1,600 400 25,800 61,300 53,500 非支配株主持分 160 12,800 18,000 400 5,760 負債・純資産合計 170,000 69,700 111,960 72,460 200,200 損益計算書 売 292,800 上 高 193,100 152,500 52,800 売上原 価 144,000 121,200 800 52,800 213,200 販売費及び一般管理費 「のれん」償却 受取利息 49,600 32,000 17,600 400 400 200 支払利 受取配当金 500 300 160 400 240 土地売却益 当期純利益 幸支配株主に帰属する当期純利益 会社株主に帰属する当期純利益 18.000 息 300 300 1,000 1,000 29,960 18,000 14,400 55,540 53,100 5,360 5,760 400 24,600 53500

回答募集中 回答数: 0
数学 高校生

赤い下線の変形で他の文字ではなく、y1を消しているのは、2行前のPFベクトル・nベクトルがc、x1、a2で表されているのに合わせにいくためですか?回答よろしくお願いします。

186 例題 96 焦点と接点を結ぶ直線と接線のなす角 楕円 1,2 D ★★★★ 621 上の任意の点Pにおける接線をとし 2つの焦点を F, F とするとき,接線1が2直線 PF, PF" となす角は等しいことを示せ。 目標の言い換え 2直線のなす角 → (傾き) = tan b, と tan0 = tan (01-02)=・・・(加法定理)・・・の利用 → 接線や直線 PF, PF' がx軸に垂直のときを 分けて考えなければならない。 (大変 ) ⇒ 接線の法線ベクトルをすると 法線ベクトルの利用 すべての場合を考えることができる。 PF のなす角α) = (n と PF のなす角β) F ⇒ cosa = cosβ を目指す。 C y 02 0₁ 0 x Action» 接線が直線となす角の性質は、法線が直線となす角を利用せよ α>b>0 としても一般性を失わ B a P =d2-2cx1+ CX であるから |PF| = q – Cx1 =a- 同様に, PF'= (-c-x1, -y)より a CX1 a PFn= -C-1,|PF|=α+ CX1 a PF, PF' とnのなす角をそれぞれα, β(0≦a≦ MBS) とおくと cosa= cos B Action. PF • n CX1 1 a² CX1 a- n an PFn (a PF.n |PF||| cosa=cosβ (a + cxi)\n\ CX1 a sanB≦πであるから alml a=Ba したがって, 接線が2直線 PF, PF'′ となす角は等し Point...焦点と接点を結ぶ直線と接線のなす角 - 光線が直線に当たって反射するとき,右 図1のように入射角と反射角の大きさ は等しくなる。 曲線上の点Pに当たって 反射する場合には,図2のように、点P における接線に対して入射角と反射角を 考え、直線と同様にこれらの大きさは等 しくなる。 よって ない。 焦点F'(-c, 0),F(c, 0) (c>0) y▲ P(x1,yi) とすると c² = a²-b² えればよい。 b>a (長軸がy軸上) のときも同様に証明でき ることが明らかであるか > bの場合だけ考 F また,点P(x1,y1) とすると, 接線 F -a -C 0 ca の方程式は X1X Viy + a² 62 =1 よって, lの法線ベクトルの1つは X1 n = ここで, PF = (c-x, y) より n = (a, b) 200 PFn=(c-x1 X1 09D 62 2 CX1 X1 Yı 2 a² a² 62 2 Pは楕円上の点であるから+2=1 よって PF = CX-1 · n 直線 ax + by + c = 0 の 法線ベクトルの1つは 0円 図 1 例題96で証明したことは, 右の図3において, 点Pが のどのような位置にあってもこの性質が成り立つこと 楕円の1つの焦点から発射した光線が楕円に当たって反 と、すべてもう1つの焦点に集まることが示されたこと (さらに, p.188 Play Back 12 も参照。) また ||PF|2=(c-x)2+y^ X1 =c2-2cx1+x2+621 = c2+b2-2cx1+ (1-1) x² 62 a" したがって、盗んできた 練習 96a,bはa>0,6≠0 を満たす定数とする。 の交点Pにおける放物線Cの接線をしと 男接線が2直線, PF となす角は等し

回答募集中 回答数: 0
1/500