数学
高校生

組み合わせの質問です。このⅰ〜ⅲは数え上げるしかないんですか?数え間違いそうなので何か他に方法があるなら知りたいです。

第6章 場合の数 例題 177 三角形の個数 (1) 右の図のように4本の平行線と5本の平行線 が等間隔で交わっている. これらの交点を結ん で三角形を作るとき,三角形はいくつできるか. **** 考え方 交点の数は全部で, 4×5=20 (個) ある. ここから3点選んで三角形を作るが, そのとき、三角形ができない3点の組合 せがあることに注意する. 解答 交点の数は, 4×5=20 (個) 3点が一直線上に ぶと三角形はできな い。 4本の直線と5本 直線の交点 20C3= このうち、3点を選ぶ選び方は, 20・19・18 3.2.1 =1140(通り) ここで, (i) 5 点がのる直線は4本 (ii) 4点がのる直線は 9 本 (1)3点がのる直線は8本 同一直線上に3点 あり,これらの同一直線上から3点を選んだ場合には三角 形ができない. 上の点が並ぶこと あるかどうか調べて いく. 注》 を参照) (i)のときの3点の選び方は, 5C3×4=40 (通り) (Ⅱ)のときの3点の選び方は, ( )のときの3点の選び方は, 4 C3×9=36 (通り) 3C3×8=8 (通り) 1140-(40+36+8)=1056 (個) よって, 求める総数は, 注 もともとある直線以外にも3点が同一直線上に並ぶ場合があることに注意しよう。 練習 177 10本の直線のうち, 3本だけが平行である. 平面上に10本の直線があり,どの3本の直線も1点で交わることはない。 *** (1) 直線の交点の数を求めよ. (2) 直線によってできる三角形の個数を求めよ.

回答

まだ回答がありません。

疑問は解決しましたか?