数学
高校生
解決済み

(4)
与えられた方程式をなぜ因数分解しちゃいけないんですか?教えてください。

539 基本 例題 110 方程式の表す図形 (1) 基本 次の方程式を満たす点の全体は,どのような図形か。 (1) 2z+1|=|2z-i (3) (3z+2) (3+2)=9 |指針 (2)|z+3-4i|=2 100000 (4)(1+iz+(1-iz+2=0 ①方程式 |-a|=|z-B を満たす点 ① 全体は 2点α, βを結ぶ線分の垂直二等分線 ②方程式 |a|=r (r>0) を満たす 点 全体は 点を中心とする半径rの円 芝浦工大] p.536 基本事項 2 重要 117, 演習 131- ② y a a x 0 x 3 3章 135 複素数と図形 (1)~(3) 方程式を,上の①または②のような形に変形する。 (4)| |の形を作り出すことはできないから, 上の ① ② のような形に変形するのは 無理。→z=x+yi (x, y は実数)とおき, x, yの関係式を導く。 (iss (1)方程式を変形すると2+1/2=12-12/21 +38- 解答 よって、 点ぇの全体は A=(is-s)(is- 2点- i 2'2 (1)=y を結ぶ線分の 垂直二等分線 (2) 方程式を変形すると27 (1+s) (1-5)) Jeb z-α| は2点 2,α間の距離 A =- 16 2 H4 2 1 -2 -3+41 1 0 2 -3 0 x この -(-3+4i)|=2 よって、点々の全体は (3) 方程式から よって |3z+2=32 点-3+4i を中心とする半径20円)+ (32+2)(3x+2)=9alis+ (re+x)||-||-(1+is ゆえに |3z+2|=3+ |zz=216 したがって2(2/3)-1 + 0=1 ||=rの形。 =1 + クルを用 よって、 を中心とする半径1の円 全体は2 3 (4) (4) =x+yi(x,yは実数)とおくと 2=x-yi これらを方程式に代入して よって 2x-2y+2=0 すなわち y=x+1 座標平面上の直線 y=x+1は2点 (-1,0), (0,1)を通 るから を通る直線 2 (1+i)(x+yi)+(1−i)(x-yi)+2=0()()(A 「1 0 x
(4) Z+ { 2 + (1 + i)} {² + (1 -i)} = 22 12+1-11² = 1212 2点-lio を結ぶ垂直二等分線

回答

✨ ベストアンサー ✨

それで問題ありません
(ただし「2点-1+iと0を結ぶ線分の垂直二等分線」)

指針で言っていることは、
現実的には(1)のような形に変形することは難しいから、
というようなことであって、
あなたのように変形してはいけない、
ということではありません

なお、因数分解とは呼びません
( )( )-z(zバー)の形に変形している
( ( )( )に項がくっついている)ためです

この回答にコメントする
疑問は解決しましたか?