数学
高校生
解決済み

次の問題の青いところで何をしているのかよくわからないのですがどなたか解説お願いします🙇‍♂️

んが-1≦k≦0 の範囲を動くとき, 直線 l:y=(2k+1)x-k-k の通 過する領域を図示せよ。 思考プロセス 《ReAction 曲線の通過領域は、 任意定数が実数解をもつ条件を考えよ 例題128 との違い・・・ 定数kに -1≦k≦0 という範囲がある。 例題128) 見方を変える -1≦k≦0 のとき, 直線 y= (2k+1)x-k-kが点 (X, Y) を通る。 ⇒ Y = (2k+1)X-k-k を満たす実数が-1≦k≦0 に存在する。 > 2次方程式(2X-1)k + Y-X = 0 を満たす実数kが-1≦k≦0に存在 する。 解 直線が点(X, Y) を通るとすると Y = (2k+1)X-k² - k IA 07 すなわち k-(2X-1)k+Y-X = 0 を満たす実数kが-1≦k≦0 に存在する。 ...① f(k)=k-(2X-1)k+Y-X とし, ① の判別式を D と すると D=(2X-1)-4(Y-X)=4X - 4Y + 1 点 (X, Y) の集合 (領域) を求めるために, XとY の関係式を導く。 (ア) 方程式①のすべての解が 1<k<0 の範囲に存在 するとき [D≧0 Y ≤ X² + 11/1 「重解の場合も含む。 -1 < 2X-1 <0 2 |f(-1)>0 [f(0) > 0 すなわち <x< 2 Y> -X LY > X 12 (イ) 方程式の解が-1<k<0 の範囲に1つとん<-1, 0<k の範囲に1つ存在するとき f(-1)f(0) <0 より (X+Y)(-X+Y) < 0 [Y> -X よって fY< -X \Y<X または [Y> X (ウ) 方程式 ① がん= -1 または k = 0 を解にもつとき f(-1)f(0) = 0 より (X+Y)(-X+Y)=0 よって Y = -X または Y=X (ア)~(ウ)より, 求める領域は右の 図の斜線部分。ただし,境界線を 含む。 12 34 [y=x+ 4. ReAction IA 例題 105 「解の存在範囲は,判別 式・軸の位置端点のy 座標から考えよ」 ReAction IA 例題 106 「2数 α, 6の間の解は, f(a), f (b) の符号を考え よ」 ReAction 例題 120 「不等式 AB>0 で表さ れた領域は、2つの連立 不等式に分けて考えよ」

回答

✨ ベストアンサー ✨

①のすべての解が-1<k<0の範囲に存在する
⇔ 放物線y=k²-(2X-1)k+Y-Xとk軸が
-1<k<0の範囲に共有点をもつ

だから、いつもの「解の配置」の問題として処理します
すなわち、判別式、軸、端点(境界)の条件を立てます

解の配置問題が不確かであれば、
至急数Ⅰの2次関数を該当箇所を復習しましょう

星光

理解できました!有り難う御座います!

この回答にコメントする
疑問は解決しましたか?