数学
高校生
解決済み

任意の実数Xというのは、すべての十数Xと同じ意味なんですか??

14 基本(例題 115 常に成り立つ不等式(絶対不等式) 00000 (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k>0が成り立つよう な定数kの値の範囲を求めよ。 (2)任意の実数xに対して、不等式 ax²-2√3x+a+2=0が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x)としたときの,y=f(x) のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-k とすると, すべての実数xに対してf(x)>0が成り立つのは y=f(x) のグラフが常にx軸より上側 (y>0の部分)に あるときである。 y=f(x) のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x) =0の判別式をDとする と, D<0 が条件となる。 y=f(x) f(x)の値が常に正 X D<0はんについての不等式になるから,それを解いてkの値の範囲を求める。 (2)(1) と同様に解くことができるが,単に 「不等式」 とあるから, α=0 の場合 (2次 不等式でない場合) と α≠0の場合に分けて考える。 40の場合αの符号によって,グラフが下に凸か上に凸かが変わるからにつ いての条件も必要となる。また,不等式の左辺の値は0になってもよいから、グラ フがx軸に接する場合も条件を満たすことに注意する。 CHART 不等式が常に成り立つ条件 グラフと関連付けて考える (1) f(x)=x2+(k+3)x-kとすると, y=f(x) のグラフ f(x)のx2の係数は正 あるから、下に凸。 解答 は下に凸の放物線である。 よって すべての実数xに対してf(x)>0が成り立つた 指針...... めの条件は,y=f(x) のグラフが常にx軸より上側にあ る,すなわち,y=f(x) のグラフが共有点をもた ないことで 不等式が成 の方針 相

回答

疑問は解決しましたか?