数学
高校生
(3)について質問です。sを求めるところまでは分かったのですがその後どうやってx,yを求めるのか分かりません💦どなたか教えてほしいです🙇🏻♀️
t=2のとき, ①は
これを解くと
すなわち
s=1
s2-2s+1=0
(x, y) = (1,1)
t=1のとき, ① は
これを解くと s=0, -1
s2+s=0
すなわち
(x, y)=(0, -1), (-1, 0)
以上から, 2x+3xy +2yは
(x, y) = (1,1) で最大値 7,
(x,y)=(0, -1, -1, 0)で最小値 -2
をとる。
88
88
テーマ
2 変数関数の最大値
Key Point 25 [105]
(1)x2-xy+y=1より (x +y)2-3xy = 1
t=x+y とおくと
t2-3xy=1
t2-1
よって xy=-
3
t2-1
(2) x+y=t, xy=
3
であるから,解と係数
の関係により,x, yはsの2次方程式
t2 - 1
s2-ts+
=0 ………① の解である。
3
このsの2次方程式 ①が実数解をもつときの
tの値の範囲を求めればよい。
①の判別式をDとすると
D= (-1)² - 4.1. 1² = -1 = -1/12² + 1 ½
3
4
3
3
①が実数解をもつのはD≧0 のときであるから
1/31+1/20
これを解くと
-2≤t≤2... ②
(3) 2x +3xy+2yについて, x+y=t,
xy=L-1 とおくと
3
2x+3xy+2y=2(x + y) + 3xy
t2-1
=2t+3.
=t2+2t-1=(t+ 1) - 2
3
②より, 2x +3xy+2y は
t=2で最大値 7, t=-1で最小値 2
をとる。
88 x,yを実数とし,x2-xy+y=1 を満たすとする。 t=x+y とおくとき,次
の問いに答えよ。
(1) xy を tを用いて表せ。
(2) tの値の範囲を求めよ。
(3) 2x+3xy+2yの最大値および最小値と, そのときのxyの値を求めよ。
[22 滋賀大)
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8933
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6082
25
数学ⅠA公式集
5654
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5140
18