数学
高校生
解決済み

(3)の問題の意味から分かりません、問題の意味を教えてください。問題の意味が理解出来たら解いてみますが、分からない部分はお聞きするかもしれません…よろしくお願いします🍵

350 重要 例題 35 数字の順列 (数の大小関係が条件) 00000 次の条件を満たす整数の組 (α1, A2, A3, A4, α5) の個数を求めよ。 (2) 0≤a1a2a3a4a53 (1) 0<ar<az<aз<as<as<9 (3) a1+a2+astastas≦3, a≧0 (i=1,2,3,4,5) ...... 基本333 指針 (1) a1, A2, ......, as はすべて異なるから, 1, 2, を選び, 小さい順に a1, a2, αを対応させればよい。 8の8個の数字から異なるうち 求める個数は組合せ C5 に一致する。」 → (2) (1) とは違って、条件の式に≦を含むから, 0, 1, 2, 3の4個の数字から重複を許し ... て5個を選び、小さい順にα1, 2, as を対応させればよい 求める個数は重複組合せ H5 に一致する。 解答 (1)1,2, 順に A1, A2, る。 8の8個の数字から異なる5個を選び,小さい ・・・・・, α5 とすると, 条件を満たす組が1つ決ま よって, 求める組の個数は (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小 さい順に α1, A2, ・・・・・, α5 とすると, 条件を満たす組が1つ 決まる。 2つの (3) おき換えを利用すると,不等式の条件を等式の条件に変更できる。 3-(a+a2+as+a+α5)=bとおくとa+az+a3+α+as+b=3 b≥0 X=1-X-1- また, a1+a2+as+a+as≦3から ←等式 よって,基本例題 34 (1) と同様にして求められる。古 検討 2 次 うにして解くこともできる。 (2)[p.348 検討の方法の利 用]bi=a+i(i=1,2,3, 4,5) とすると,条件は 0<br<b<b<ba<b<g と同値になる。 よって 56個 (1)の結果から 8C5=8C3=56 (13) S=1-3 .0 よって、求める組の個数は 4H5=4+5-1C5=8C556 (個) (3)3個の○と5個の仕切り (3) 3-(a1+a2+α3+α+αs)=bとおくと a1+a2+a3+a+α5+b=3, a≧0 (i=1,2,3,4,5,6≧0 よって、求める組の個数は, ① を満たす 0 以上の整数の組の 個数に等しい。これは異なる6個のものから3個取る重複組 合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) を並べ,例えば, 〇〇〇円の場合は (0,1,0,2,0) を表すと 考える。このとき, A|B|CD|E|F とすると,A, B, C, D Eの部分に入る○の数を ①

回答

✨ ベストアンサー ✨

こんにちは!
簡単な解説を添付いたしましたのでご確認ください。
分からない部分、読めない部分等ありましたら遠慮なく仰ってください🙇‍♂️

解答で分からない部分があれば追加で仰ってください!🙌

なの

すごく分かりやすく、問題の意味を理解出来ました!ありがとうございます!🌟

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉