数学
高校生

開設の2・3行目の左辺は何を表しているのですか?

476 基本 41 隣接3項の漸化式 (1) 次の条件によって定められる数列{a} の一般項を求めよ。 0000 P.475 基本事項■ 解答 (1) α1=0, a2=1, an+2=an+1+6am (2) α11=1, a2=2, an+2+40n+1-5an=0 指針 まず+2 をx, anti を x, an を1とおいたxの2次方程式 (特性方程式)。 その2解をα, β とすると, αβのとき In+1 ants-aan+=(anti-aan) ans. Bana(ann-Bar) が成り立つ。この変形を利用して解決する。 ® (1) 特性方程式の解はx=-2, 3→解に1を含まないから、 A を用いて2 表し,等比数列{an+1 +2an}, {an+1-3a} を考える。 (2) 特性方程式の解は x=1, 5→解に1を含むから,漸化式は an+2-Qn+1=-5(4n+1-αn) と変形され, 階差数列を利用することで解決できる。 (1) 漸化式を変形すると an+2+2an+1=3(an+1+2a) an+2-3an+1=-2 (an+1-3an) ①, ①より, 数列{an+1+2an} は初項a2+2a1= 1, 公比3の 等比数列であるから an+1+2an=3n-1 ②より, 数列{an+1-3an} は初項α2-3a1= 1, 公比-2 の等比数列であるから an+1-3an=(-2)"-1. ④C x=x+6を解くと、 (x+2)(x-3)=から x=-2,3 α-2,B=3として 針の人を利用。 基本 次の ③ ④ から 5an=3"-1-(-2)"-1 したがって an= -{3"-1-(-2)"-1} 5 (2) 漸化式を変形すると an+2-an+1=-5(an+1-an) で ゆえに, 数列 {an+1-an} は初項α2-a1=2-1=1, 公比 -5の等比数列であるから an+1-an=(-5)-1 よって, n≧2のとき k=1 13. 1・{1-(-5)"-1} 1-(-5) (8-8)- n-1 an=a+2(-5)=1+ (7-(-5)) n=1 を代入すると, 1/3 (7-(-5)") =1であるから,上の an+1を消去 x2+4x-5=0を解くと (x-1)(x+5)=0から x=1, -5 別解 漸化式を変形して an+2+5an+1=+1+5, よって+1+5an =an+50-1 & & &=......= α₂+50 an+1+5a=7 を変形し 7 an+1- 合 式はn=1のときも成り立つ。 したがってan=1/12 (7-(-5)^-'} an - 76 7-6 .. a.=(7-(- an Ad

回答

まだ回答がありません。

疑問は解決しましたか?