数学
高校生
解決済み

g(x)=(t^2-t+1)/tを、2枚目のように変形して見たのですが、g'(x)=の解としてt=-1がでません!
何が間違っていますか?回答よろしくお願いします!

第4章 微分法の応用 229 118 f(x)=(1-xe* とする.実数aに対して, 点 (a, 0) を通る, 曲線y=f(x) の接線が2本 引けるとき,aの値の範囲を求めよ. f(x)=(1-x)e* より f'(x)=e*+(1-x)e* =-xe f"(x)=(1+x)e* y=f(x) のグラフの概形は 右の図のようになり,曲線に 2点以上で接する直線はない. YA 2 接点の座標を (t,f(t)) とすると,接線の方程式は, y-(1-t)e'=-te(x-t) 点 (α, 0) を通るから, 0-(1-t)ef=-te(a-t) 1-t=t(a-t) 曲線 y=f(x) は, x <-1 のとき,下に凸 x>-1のとき,上に凸 なので、異なる2点で接する 直線はない. <y-f(t)=f(t)(x-t) t2-t+1 t=0 は解ではないので, =a ...... ...1 点(α, 0) から y=f(x)に引ける接線の本数は,①の異な 実数解 tの個数に等しい. つまり、gt)= 直線 y=a の共有点の個数に等しい。 0g(t)=(2t-1).t-(ピーt+1)・1 t-t+1 とおくと,y=g(t) のグラフと t2 t-1_(t-1)(t+1) t2 t² g'(t)=0 とすると,t=-1, 1 したがって,g(t) の増減表は次のようになる. <両辺をe (≠0) で割る. t=0 を代入すると, (左辺) =1, (右辺) = 0 ①を満たす tの値は,接点の x座標である. <y=g(t) と y=aの 共有点の個数 方程式 g(t)=aの 実数解の個数 I 接点の個数 接線の本数 AS t 18 g'(t) + 0-1 limg(t)=—oo -1 ... 0- 0 ... 1 0 + 8 g(t)(∞)-3(-8) (8) (8) < 極値および定義域の端のよう lim g(t)=∞ t→ +0 _limg(t) =∞ →+∞ 8 81 limg(t)=- y4y=g(t) y=a す (t→±0.t→土∞)を調べ る. 0 8117 よって、右のグラフより、 接線が2本引けるときのαの -3 値の範囲は, a<-3, 1<a
J (7)= でて+1 て てけも 8(t): 1-1/2 2 8(t)=0の、ビニュ ては宗教なので1

回答

疑問は解決しましたか?