数学
高校生
解決済み

例題43の(2)の問題で、|a+b|≦1,|a-b|≦3から (a+b)²+(a-b)²≦1²,(a-b)²≦3²のところで、なぜ二乗をしなければいけないのかわかりません。教えてください🙇‍♀️

基本 例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて,次の命題を証明せよ。 (1)x+y=2 ならば「x≦1 または y≦1」 (2)'+b2≧6 ならば「a+6|>1 または |a-b|>3」 CHART & SOLUTION 対偶の利用 nom 命題の真偽とその対偶の真偽は一致することを利用 00000 p.76 基本事項 6 (1)x+y=2 を満たすx, y の組 (x, y) は無数にあるから,直接証明することは困難であ る。そこで,対偶が真であることを証明し,もとの命題も真である,と証明する。 条件 「x≦1 または y≦1」 の否定は 「x>1 かつy>1」 (2)対偶が真であることの証明には,次のことを利用するとよい。 解答 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 「x>1 かつ y>1」 ならば x+y=2 これを証明する。 x>1, y>1 から x+y>1+1 すなわち x+y>2 よって, x+y=2 であるから, 対偶は真である。 したがって,もとの命題も真である。 (2)与えられた命題の対偶は 「la +6≦1 かつ a-b≦3」 ならば2+62<6 ←pg の対偶は q⇒ p ←x>ay> b ならば x+y>a+b (p.54 不等式の性質) 2章 6 これを証明する。 |a+6|≦1, |a-b≦3から (a+b)2≦12, (a-b)2≦32 ←|A|=A2 よって (a+b)2+(a-b)≦1+9 ゆえに 2a2+62)≦10 よって a2+62≦5 ゆえに、対偶は真である。 したがって,もとの命題も真である。 a+b25と5<6 から a2+62-6 POINT 条件の否定条件, gの否定を,それぞれ,g で表す。 かかつ または または かつ PNQ=PUQ PUQ=PnQ 論理と集合

回答

✨ ベストアンサー ✨

・| |は扱いにくいから外したい →場合分けとか2乗
・| |は2乗したら| |が取れる
・示す式が2乗の式ということもあり、
 仮定の式を2乗することは十分ありうる
・(a+b)²と(a-b)²からabやa²+b²をつくれることを
 経験的に知っている

などの理由ですかね

ソル

ありがとうございました!

この回答にコメントする
疑問は解決しましたか?