数学
高校生
数IIの不等式の証明の問題です。
特に(2)の意味がよくわかっていません。どなたか教えてください!!😭😭
30 |a|<1, |6|<1, |c|<1のとき, 次の不等式を証明せよ。
(1) ab +1 >a+b
(2)
abc+2>a+b+c
|30|a|<1, |6|<1, |c|<1のとき,次の不等式を証明せよ。
(1) ab+1>a+b
(2) abc+2>a+b+c
解説
(1) ab+1-(a+b)=(6-1)a-(6-1)=(a-1)(6-1)
|a|<1, |6|<1から
a-1<0, b-1<0
よって
(a-1)(b-1)>0
すなわち
ab+1-(a+b)>0
したがって ab+1> a + b
(2)|a|<1, b<1から
|ab|<1
また |c|<1
よって, (1) から
abc+1>ab+c
すなわち
abc +1 > ab+c
******
|a|<1, |6|<1 から, (1) により
.. ①
ab + 1>a + b .... ②
① ② の辺々を加えて
したがって
abc+2> a + b + c
abc+ab+2>ab+a+b+c
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8929
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6081
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5840
24