数学
高校生
解決済み

ピンクのところどうしたらこのように展開できるんですか?

例題 344 内積と三角形の面積 点Oを原点とする.a=OA = (a1,a2), = OB = (b1,62), AOAB の面 積をSとする.このとき,次の式を示せ . せ s={√|ª³|b³²—(à• b)² = |a1b₁-a2b₁| BA A 考え方とのなす角を0とすると、△OAB の面積Sは, ■解答 S=OA-OB sine= |a|6|sine 5+36 9= 2 である. sin'0+cos0=1, d・L = |a||| cose を利用する aとのなす角を90°<9<180°) とすると, sin00 より, sin0=√1-cos' であるから, S=1/120A・OBsin=1/21|2|3|sine Focus -CO よって, ①, ②より, 与式は成り立つ. = |al|6|√1-cos²0=√|a³|b³(1-cos³0) - 100 = 1/2 √la 196³-|à P²|6|³ªcos²0 =√√ã³²|6³²-(¦â||b|cos0)² -√ã²b³²—(ã·¯)² また, lap=a²+a2²,16=622+62², at=ab+azb2 ①を成分で表す. であるから,①に代入して S=½ √(ai²+a2²)(b₁²+b₂²)— (a₁b₁+a2b2)² =1/12 -√(a₁b₂)²—2a₁b₁a₂b₂+(a₂b₁)² 1021 = 0 AO 8=58 ==√(a₁b₂-a₁b₁)² = |a₁b₁-a₂bil.... =3rd=d-0 0=A5+50+87 0=5+3+ HA 0 sin20+cos20=1 どのよ sin'0=1-cos20 sin0 >0 より sin0=√1-cos20 B △OAB で, OA= (a1,a2), OB=(b1,62) のとき, s=-=|a₁b₂-a₂b₁| lab2- 注 △ABCの面積も, a = AB, AC とおいて同様に求められる。 MASCH ATEA B O OH HA の結果を利用して、次の三角形の面積を求めよ. CADの面積 S b OS -MA) 38 (15-30-38-A ** a √A2=|A| S=absine 第9章

回答

疑問は解決しましたか?