数学
高校生
n2 +3n -1が5の倍数でないことを証明するのに、「n」を5で割ったあまりで分類するのかがわかりません。お願いします🙇⤵️
余りによる
101 nは整数とする。 n²+3n-1は5の倍数でないことを証明
せよ。
ポイント2 整数についての事柄を証明するとき,整数をある整数で割った
余りで分類して考えると,うまくいく場合がある。
ここでは,5の倍数でないことを示すから,5で割った余りで分
類し, n=5k, 5k+1,5k+2,5k+3,5k +4 の各場合を考え
る。
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8920
116
数学ⅠA公式集
5638
19
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4549
11
詳説【数学A】第3章 平面図形
3607
16