数学
高校生
解決済み

この問題で①〜⑦までの判別は出来たのですが、⑧が解けません。私はまず分配法則で
-cos(-θ+4/3π)
=cosθ-cos4/3π
=cos(θ-4/3π)
それでcosθのグラフをθ軸方向に4/3πずらしたグラフを考えたら、右の図のようなグラフにならなかったので⑧は右の図と違うと判断したら間違ってました。私の解き方のどこが間違ってるのか教えて欲しいです(;-;)

3 下の三角関数 ① ~ ⑧ のうち, グラフが右の図の ようになるものをすべて選べ。 2 Ⓒsin (0+²37) ℗ sin(-0+327) 3 5 -sin 0 π 10-11-1 5 @cos (0+²/3 =) ② 4 -cos (0+²37) 13-> 2 ④ 5 TEE 6 @cos (0-x) 3 -sin(-8-4)-cos(-0+ *) 4 6 COS 1 YANG 6 4 -1 0 11 (3-08) 200-2 (05) os(-0+357) (+85) nies=x (e) Hoxmox eac

回答

✨ ベストアンサー ✨

この問題では、分配法則は使えません。
まず、cos(-θ)=cosθなので、-cos(-θ)のグラフは、-cosθ のグラフと同じでcosθのグラフを上下逆さにしたものになります。
その後、θ軸方向に4π/3ずらすと、⑧の三角関数のグラフができます。

あとは、この問題のようにグラフの座標がわかっている場合、θに座標を代入して当てはまっているか確認するという方法でも解けるのではないかと思います。

この回答にコメントする
疑問は解決しましたか?