数学
高校生

記述の仕方ですが、「◯の符号が変わるので」という書き方でも大丈夫ですか?

(a, b) O a (a, -b) 注意。 x, y) X き換 2次関数のグラフの対称移動 基本例題 14 | 2次関数y=2x²-5x+4のグラフを ( 1 )x軸 (2) y軸 (3) 原点 それぞれに関して対称移動した曲線をグラフにもつ2次関数を求めよ。 p.122 基本事項 ① 指針>関数y=f(x)のグラフを対称移動すると,次のように移る。 軸対称 y. A (x,y) YA 0 X軸対称 (x, y) 解答 (1) y を -y でおき換えて 0 -y=2x2-5x+4 x よって (2) x を -x でおき換えて y=-2x2+5x-4 y=2(-x)-5(-x)+4 [1-y=f(x) y=f(-x) ここでは,y=2x2-5x+4の式で次のようにおき換える。 [1] x 軸対称:y -y [3] 原点対称:x→-x, y→-y この [1], [2], [3]のおき換えによる解法は, 2次関数以外の関数のグラフについても利用 することができる。 って y=2x2+5x+4 (3)xを-x, y を -yでおき換 えて 0 -y=2(-x)-5(-x)+4 y=-2x2-5x-4 7/00 [2]y軸対称:x→-x 8 4 10 A -- 5 4 検討 例題 74 の別解 別アプ2の係数と頂点に着目して,次のように考えてもよい。 ローチ 原点対称 y 0 -y=f(-x) 644 xはそのまま。 < x²の係数の符号が変わる。 (上に凸のグラフになる。) yはそのまま。 < x2の係数は不変。 (下に凸のグラフのまま。) x2の係数の符号が変わる。 (上に凸のグラフになる。) *³, y=2x²–5x+4=2(x− 5)² + ² c ₁ p = { /. 9 = ² x B <. 5 で, とおく。 4' 8 x2の係数 頂点 求める 2次関数 (1) x軸対称: 2-2(p,g) →(p,-g) ➡y=-2(x-p)²-q (2) y軸対称: 2 2 (p, q) → (p, q) →y=2(x+p)2+q (3) 原点対称: 2 -2 (p,q) → (p,-g)y=-2(x+p)2-q 練習 2次関数y=-x2+4x-1のグラフを (1) x軸 (2) y軸 (3) 原点 のそれぞ 74 れに関して対称移動した曲線をグラフにもつ2次関数を求めよ。 123 3章 9 2次関数のグラフとその移動
もう一度 例題74 1) グラフをX軸に関して対称移動すると. りの符号が変わるのざ 4 = 2x²² = 5x + 4 Fl. - - 9=2x²³²-5x + 4 y=-2x+5x-4 2)グラフを軸に関しく対称移動すると、 xの符号が変わるのざ Y = 2-(-x) ²³²-5(-x) + 4 =2x²+5x+4 Ef 3)グラフを原点に関しく対称移動すると. ひとりの符号が変わるので、 - 9 = 2 - (-x)² = 5 (-x) + 4 y=-2x^²-5x-4 ff

回答

まだ回答がありません。

疑問は解決しましたか?