数学
高校生

赤線部分がなんでそうなるのかわかりません

ONE 解答 基本例 |関数y=2 141 三角関数のグラフ (2) 日 π 2cos ( 12-10 ) のグラフをかけ。また、その周期を求めよ。 6 例題 一π てグラフをかく要領は,次の通り。 ① y=costを軸方向に2倍に拡大 基本のグラフy=cos0 との関係(拡大・縮小,平行移動)を調べてかく。 y=2cos (12)より、y=2cos2/21(0-1/8) 1 であるから、 基本形y=cos0をもとにし 3 →y=2cose ② ①を軸方向に2倍に拡大 倍は誤y=cos 0 注意 y=2cos( ③ ②0軸方向にだけ平行移動 0 π 2 6 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小, 平行移動 1 よって, グラフは図の黒い実線部分。 周期は2π÷ 2 YA 2 3, y=2 cos(-)-2cos (0-3) 6 √3 3y=2cos (0) 4 3 3 27 -=- 11 π0π 2 3 -1 -2 SA! π 2 →y-2 cos(0). のグラフがy=2cos/1/27 のグラフを軸方向に π y=cose = 7 2π π 5|2 〃 2π ② y=2cos 10 103 3π 3,7 √22! 9-2 0 ! ---- 7 4π 27 = 4T 13 π 3" 00000 9 2π 0 ------ 基本 140 0 2 ③3③ だけ平行 0の係数でくくる。 <y=cos' の周期と同 229 じ。 0軸との交点や最大・ 最小となる点の座標を チェック (2.0). (5.2). (1.0), (1. -2). Ⓒy-2cos6/19 (1x, 0). (1.2) (10) ・π, 試験の答案などでは,上の図のように段階的にかく必要はない。 グラフが正弦曲線であることと周期が4であることを知った上で,あとは曲線上の主な点 をとってなめらかな線で結んでかいてもよい。 B 4章 2 三角関数の性質、グラフ

回答

まだ回答がありません。

疑問は解決しましたか?