数学
高校生

左側のページの下線部の部分がよく分かりません。教えてください

528 基本例題 119 最大公約数 最小公倍数と数の決定(2) (専修大) 次の (A), (B), (C) を満たす3つの自然数の組(a,b,c) をすべて求めよ。 ただし、 a<b<cとする。 (A) a,b,c の最大公約数は 6 七日 (B) bとcの最大公約数は 24, 最小公倍数は144 (C)αともの最小公倍数は240 解答 ● la' と こうゆく うやく 前ページの基本例題118と同様に, 最大公約数と最小公倍数の性質を利用する。 2つの自然数a,bの最大公約数をg, 最小公倍数を1, a = ga', b=gb'とすると 3ab=gl 21ょうじく (A)から,a=6k,b=6l,c=6mとして扱うのは難しい (k,1,mが互いに素である 'は互いに素 とは仮定できないため)。 (B)から6, c, 次に, (C)からαの値を求め、最後に (A) を満た すものを解とした方が進めやすい。 このとき, b=246',c=24c' (b', c' は互いに素で6'<c') とおける。 これから6,c を求める。 最小公倍数について 246'c'=144 (B) の前半の条件から, b=246′,c=24c′ と表される。 b'<c' ただし, b', c' は互いに素な自然数で (B) の後半の条件から 24b'c' =144 すなわち b'c' = 6 これと ①を満たす b', c' の組は 9 (b', c')=(1, 6), (2, 3) 練習 次の(A).. (B) COT ゆえに (b, c)=(24, 144), (48, 72) (A)から,αは2と3を素因数にもつ。 また, (C) において 240=24・3・5 [1] b=24=233) のとき, a と 24 の最小公倍数が 240 であるようなαは a=24・3・5 これは,α<bを満たさない。 [2] b=48(23) のとき, a と 48 の最小公倍数が240 であるようなαは a=2².3.5 ただし p = 1,2,3,4 <48 を満たすのはp=1の場合で,このとき 30,48,72の最大公約数は 6, (A) を満たす。 以上から (a,b,c)=(30,48,72) p.525 基本事項因 基本 118 a=30 120 互いに素に関する証明問題 (1)/ は自然数とする。 n +3は6の倍数であり / n+1は8の倍数であるとき, +9は24の倍数であることを証明せよ。 任意の自然数nに対して, 連続する2つの自然数nとn+1は互いに素で (2) あることを証明せよ。 p.525 基本事項 2 重要 122. Agb'c'=l b=246', c=24c' 3つの数の最大公約数は 6=2.3 240=24・3・5 [1] b=2³.3 [2] b=2・3 これからαの因数を考 える。 ( b, c) をすべて求めよ。 ただし、 (1) n を用いて証明しようとしても見通しが立たない。 例題110 のように, n+1, n+9 がそれぞれ 8, 24の倍数であることを, 別々の文字を用いて表し, n を消去す る。そして、nの代わりに用いた文字に関する条件を考える。次のことを利用。 a,b は互いに素で, akが6の倍数であるならば, (a, b, kは整数) kは6の倍数である。 ★ ...... (2)nn+1は互いに素nとn+1の最大公約数は 1 nとn+1の最大公約数をgとすると この2つの式からnを消去して g = 1 を導き出す。ポイントは A. Bが自然数のとき, AB=1 ならば A=B=1 CHART n=ga, n+1=gb (a,b は互いに素) 11 ak=blならばんは6の倍数はαの倍数 a,bは 互いに素 ② aとbの最大公約数は 1 2 (1) n+3=6k,n+1=81 (k, lは自然数) と表される。 参考 (1) n +9は6の倍 n+9=(n+3)+6=6k+6=6(k+1) 15 n+9=(n+1)+8=82+8=8(+1) 数かつ8の倍数であるか ら 68 の最小公倍数 である24の倍数, とし て示してもよい。 よって 6(k+1)=8(+1) すなわち 3(k+1)=4(+1) 3と4は互いに素であるから, k+1は4の倍数である。 したがって,k+1=4m (mは自然数) と表される。 n+9=6(k+1)=6.4m=24m したがって, n +9は24の倍数である。 (2) nとn+1の最大公約数をgとすると n=ga, n+1=gb (a,b は互いに素である自然数) 529 と表される。 n=ga をn+1=gb に代入すると ga+1=gb すなわち g(b-α)=1 g=1 gは自然数, baは整数であるから したがって, nとn+1の最大公約数は1であるから, • (2) の内容に関連した内容を, 次ページの参考で扱っている。 nとn+1は互いに素である。 指針_____ ★の方針。 なお,「3と4は互いに 「素」は重要で, この条件 がないと使えない。 答案 では必ず書くようにする。 また,このとき, Z+1は 3の倍数である。 したがって, 7+1=3m と表されるから, n+9=8.3m=24m としてもよい。 積が1となる自然数は1 だけである。 4章 (1)n nは自然数とする。 n +5 は 7の倍数であり, n +7は5の倍数であるとき, ⑩8 約数と倍数、最大公約数と最小公倍数 18

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉