f(x) = xlog(x+1)
f'(x) = log(x+1) + x/(x+1) = log(x+1) + 1 - 1/(x+1)
f"(x) = 1/(x+1) + 1/(x+1)²
f⁽³⁾(x) = -1/(x+1)² - 2/(x+1)³
f⁽⁴⁾(x) = 2/(x+1)³ + 6/(x+1)⁴
…
f⁽ⁿ⁾(x) = (-1)ⁿ(n-2)!/(x+1)⁽ⁿ⁻¹⁾ + (-1)ⁿ(n-1)!/(x+1)ⁿ
ここで
f'(x) + f"(x) + f⁽³⁾(x) + f⁽⁴⁾(x)
= log(x+1) + 1 + 6/(x+1)⁴
のように、微分級数和はほとんどが相殺されて
log(x+1)+1と最後の項のみが残る
また
f⁽²ⁿ⁺¹⁾(x) = -(2n-1)!/(x+1)²ⁿ -(2n)!/(x+1)²ⁿ⁺¹
より
Σ[k=1→2n+1] f^(k)(x)
= log(x+1) + 1 - (2n)!/(x+1)²ⁿ⁺¹
x=0 を代入すれば 1 - (2n)!