(5)
={(a+b)(a-b)(a⁴+a²b²+b⁴)}²
={(a²-b²)(a⁴+a²b²+b⁴)}²
a²=A、b²=Bとすると、
={(A-B)(A²+AB+B²)}²
={A³-B³}²
=A⁶-2A³B³+B⁶
=(a²)⁶-2(a²)³(b²)³+(b²)⁶
=a¹²-2a⁶b⁶+b¹²
(6)
=(x+2)(x²-2x+4)(x-2)(x²+2x+4)
=(x³+8)(x³-8)
=(x³)²-64
=x⁶-64
(7)
a+b=X、a-b=Yとする
=(a+b+c)²+(a+b-c)²+(c-(a-b))²+(c+a-b)²
=(X+c)²+(X-c)²+(c-Y)²+(c+Y)²
=X²+2cX+c²+X²-2cX+c²+c²-2cY+Y²+c²+2cY+Y²
=2X²+2Y²+4c²
=2(a+b)²+2(a-b)²+4c²
=2a²+4ab+2b²+2a²-4ab+2b²+4c²
=4a²+4b²+4c²