数学
高校生
解決済み

高校数学の整数の性質の単元です。数学的帰納法を用いて解くものになります。
2度目の質問になります。
右の14.15行目の解答が何故このようになるのかがわかりません。教えて下さると幸いです。

EADER 【数学】 x2y+1-y2=2023 を満たす素数x,yの組 を求めよ. 【解答】 2023 は奇数であるから, x2y+1-y2=2023 ① を満たすとき, x2y+1 と y2 の偶奇は異なる. つ まり, xとyの偶奇は異なる . 偶数かつ素数は2のみであるから, x,yのど ちらか一方が2である. (I) y=2のとき. ① に用いると, x5=2027. 2027 は素数であるから, これを満たす素数 x は存在しない。 (II) x=2のとき. ① に用いると, 22y+1-y2=2023. (2) yは奇数かつ素数よりy ≧3であることに 注意する。 まず, y=3のとき, 22y+1-y2=27-32 =119 より,②は成立しないから不適. 次に, y=5のとき, 22y+1-y2=211-52 =2023 より ② は成立する. 最後に, y ≧7のとき 22y+1 -y2>2023 が成立することを示す. そのため, n7以 上の自然数としたとき, が成立することを数学的帰納法で示す. (i) n=7のとき. 22n+1 > n²+2023 22n+1=215=32768, より, ③ は成立する. (ii) k7として, n=kのとき, 22k+1 >k2+2023 n²+2023=49+ 2023 = 2072 が成立すると仮定する. このとき, >0 22(k+1)+1_{(k+1)^+ 2023} =22k+3_(k2+2k+2024) =4.22k+1−(k2+2k+2024 ) > 4(k² +2023) − (k²+2k+2024) =3k²-2k+6068 より、 =k(3k-2)+ 6068 ≥7.19+6068 22(k+1)+1> (k+1) + 2023 を得る.これは,③がn=k+1のときも 成立することを意味する 以上 (i), (i) から, n ≧ 7 のとき, 22+1 > n² +2023 が成立することが示された. これより, y ≧7のとき, 22y+1 -y2>2023 となり,② (I), (II) より 求める素数x,yの組は, (x,y)=(2,5). を満たす素数yは5に限られる. (
整数の性質

回答

✨ ベストアンサー ✨

印を打ったところを利用しているのでは

ゲスト島田

丁寧な解答ありがとうございました。お蔭で最後の解答まで辿り着く事が出来ました。再度同じ問題でつまづく事が無いように度々復習しておきます🙇🏻‍♂️🙇🏻‍♂️

この回答にコメントする
疑問は解決しましたか?