数学
高校生

xについての二次方程式を解いたあとからの解説がよく分からないので教えてほしいです!

重要 例題 45 因数分解ができるための条件 00000 x2+3xy+2y²2-3x-5y+kがx,yの1次式の積に因数分解できるとき,定数k の値を求めよ。 また, その場合に,この式を因数分解せよ。 [東京薬大] 基本44 指針与式がx,yの1次式の積の形に因数分解できるということは, (5)=(ax+by+c) (px+qy+r) }(0-1)(-x)(0-5) の形に表されるということである。 恒等式の性質を利用(検討参照)してもよいが,ここで は、与式をxの2次式とみたとき, =0とおいたxの2次方程式の解がyの1次式で なければならないと考えて, kの値を求めてみよう。 ポイントは,解がyの1次式であれば、 解の公式における 方式 [(整式)の形の整式] となることである。 解答 P=x2+3xy+2y2-3x-5y+kとすると P=x2+3(y-1)x+2y2-5y+k P=0をxについての2次方程式と考えると, 解の公式から _ −3(y−1)± √√9(y—−1)²—4(2y²—5y+k)____ x= 2 ___ -3(y-1)±√y²+2y+9-4k 2 Pがx,yの1次式の積に因数分解できるためには,この解がy の1次式で表されなければならない。 このとき すなわち よって よって,根号内の式y'+2y+9-4kは完全平方式でなければな らないから, y2+2y+9-4k=0の判別式をDとすると D k=2 1=12-(9-4k)=4k-80 ゆえに 4 -3(y-1)±√(y+1)^_-3y+3±(y+1) x=- 2 x=-y+2, -2y+1 P={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2y-1) 2 内がyについての完全平 x²の係数が1であるから, xについて整理した方がら くである。 この2つの解をα, βとす ると, 複素数の範囲で考え てP=(x-α)(x-β) と因数分解される。 <完全平方式 ⇔=0が重解をもつ 判別式D=01 (y+1)^2=y+1である が,± がついているから, y+1の符号で分ける必要 はない。 77 と、(与式)=(x+y+a)(x+2y+b) ① は、xとyの恒等式であり,右辺を展開して整理すると (与式)=x²+3xy+2y^+(a+b)x+(2a+b)y+αb となるから,両辺の係数を比較して a+b=-3, 2a+b=-5,ab=k これから,kの値が求められる。 (1) 2章 検討 恒等式の性質の利用 x2+3xy+2y²=(x+y)(x+2y) であるから、与式がx,yの1次式の積に因数分解できるとする ① と表される。 (2) 2x²-xy-3y2+5x-5y+k 9 解と係数の関係、 解の存在範囲 180 練習 次の2次式がx,yの1次式の積に因数分解できるように、 定数kの値を定めよ。 の 945 また,その場合に、この式を因数分解せよ。 (1) r²+ry-6y²-x+7y+k (3

回答

まだ回答がありません。

疑問は解決しましたか?