数学
高校生

別解で、波線引いたαn+3はどこから出てきたんですか?

例題 117 連立漸化式 列{an},{bn}が次のように定められるとき,次の問いに答えよ。 α=4,b=1, an+1=3an+bm 数列{an+bn}, {an-bn}の一般項を求めよ。 数列{an},{bn}の一般項を求めよ。 CHART OLUTION 数列{an}, {bn}の連立漸化式 2 ………... PRACTICE ‥.①, bn+1=an+3bn....... ② an+1+abn+1=β(an+αb) を導く ・・・・・・! an (またはbm) だけの漸化式を導く 別解 ① から これら②から よって 解答 口 (1) ① +② から an+1+bn+1=4(an+bn) から 数列{an+bn}は,初項 α+b=5,公比4の等比数列である an+bn=5.4-1 ④から ← ① ② から an+1-bn+1=2(an-bn) から 数列{an-bn}は,初項 α-b1=3,公比2の等比数列である an-bn=3.2n-1 隣接3項間の漸化式となる。 an (2) (1)からa=12/12(5.41+3.2 -1, 6n=1/12(5.4" bn=an+1-3an, bn+1=an+2-3an+1 an+2-3an+1=an+3(an+1-3an) an+2-6an+1+8an=0 これを変形すると an+2-2an+1=4 (an+1-2an) an+2-4an+1=2(an+1-4an) 数列{an+1-2an}は,初項a2-2a1=(3a+b1)-2a1=5, 公 比4の等比数列であるから an+1-2an=5.4-1 ・③ 数列{an+1-4an}は,初項a2-4a1=(3a+bì)-4a=-3, 公比2の等比数列であるから an+1-4am=-3.2-1 4 an=(5-4-¹+3.2²-1) ゆえに, ① から bn=an+1-3an = 1/12 (5.4"-1-3.2"-1) 4-1-3.2"-1) inf. an+tab =(an+abm)と変 ると、数列{ant ob 比数列になる。 ①②から an+1+abn+1 =(3a+bml)+clart1. =(3+α) am+(1+301_ B=3+α, a6=1+30 (3+α)=1+30 よって α=±1 ゆえに,数列{ax+bd {bn}は等比数列 る。 inf. CHART & SOLUTION の口につ て。 まず 連立漸化式 辺の和差を求めよう の形を導けることがあ ■an+1を消去する。 117⑨ 次の関係式で定まる?つの数列{an}と{bn}がある。

回答

まだ回答がありません。

疑問は解決しましたか?