数学
高校生

線を引いているところで、なぜその式を使うのか疑問です。教えてください🙇‍♀️

Check |x-mx+ pm-9 例題 113 2直線の交点の軌跡2 (お(熊本大) m の2本の接線が直交するような点Pの軌跡を求めよ。 これは y=の接続なので,2式からyを消去した2次方程式の判別なる る。mの2次方程式を導き出したら解と係数の関係を利用する。 点Pの座標を(b, q) とおく. D=V と 解答 x-mx- pm+qよい ので、ポーnx+ pm-q=0の判別式を D.とすると, D=0 となる。 よって, のの解mが接線の傾きとなるので,①は異なる2つのor 実数解m,ma をもち,かつ,m;m2=-1 の関係にある。 異なる2つの実数解 m,, m2 をもつための条件は,①の 判別式を Da とすると,D:>0 である。 D2 1 のつおに D,=m'-4pm+4q=0 垂直条件:mm'=ー) 又 mm くが-q>0 より, ゲ=(2カ)?-4q>0 より, がーg>0 のまた,①において, 解と係数の関係より, mm2=-1 であるから, 上円 09くがを満たす範 m,m2=4q 94 4q=-1 0円販O o 0 半 。 異お3丁点コ 1 したがって, =ー …3 4 2, 3より, が+>0, q=- phtゴt -=b 4 おう0090ー が+ー>0はすべての実数かに ー同お 0 ついて成り立つ. よって,点Pの軌跡は,-M0\ の2つの解をa, Bと 画直線 vーー 解と係数の関係 |ax+ bx+c=0 (a+0 すると, 0」 b α+B=-- a8=! a x 同係で点Qを点Rに対応 が内に変換されるな 1 4

回答

まだ回答がありません。

疑問は解決しましたか?