数学
大学生・専門学校生・社会人
大学数学の問題です。SIRモデルを題材にした微分方程式です。連立微分方程式で解こうと考え、固有値から固有ベクトルを求めようとしましたが綺麗な値にならず、間違っているように感じました。考え方から回答例まで教えていただきたいです。
問題 14. ある感染病Aに対する SIR モデル
d.s
-BS(t)I(t)
ニ
dt
dI
BS(t)I(t) - っI(t)
ニ
dt
dR
1(t)
ニ
dt
を考える。ここで, S(t)は感染可能者, I(t) は感染者, R(t)は除外者である. また, ある町の人口を Nとすれば,
N= S(t)+I(t) + R(t) が成り立つとする. そして, s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N としたモデル
ds
ニ
dt
1
-i(t) :0
50
di
1
ニ
dt
dr
1
i(t)
50
ニ
dt
を考える。
さて, N= 1000 とするとき, 感染病 Aが拡大しないようにするには,少なくとも何人にワクチン接種をしなけ
ればならないか?ただし, ワクチンの効果は 90%(ワクチンを接種すれば 10人中9人は感染しない)とし, 初期
感染者は 19名,初期除外者は0名,ワクチン接種は感染可能者のみに行うものとする.(8点)
(解答欄:必ず途中式や理由などを記載すること)
N=100
基本理産激が121大きとき感染者は増にするをめ、
これが 1さり小さくなるとよい。
VC)をつクチン緒の数だとすると.
ds
s -) icは) -
dt
14
AV
At。
271
190
こ
Io sCt)
13
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉