数学
高校生
解決済み

式と計算

この問題で、対称性を崩さないように①、➁、③の辺々を足しているのようなのですが、なぜ辺々を足すことができるのでしょうか?何となくそうなると言われればわかる気はしますが、納得しにくくて。どなたかわかる方いらっしゃいますか?

=k(キ0) が成り立つとき, kの値を求めよ 比例式の値 考え方 比例式は,「=k」とおく、 2(y+z)=kx, 2(z+x)=ky, 2(x+y)=kz から kom。 Check 例題 26 を満たすとき、 2(y+z)_ 2(z+x)_2(x+y) この女の様 y X x, 3, 2が を求めよ。 めればよい.また, xキ0, yキ0, zキ0 である。 2(x+y) 2(y+z)_ 2(z+x)_. y -=k とおくと, る 解答 a x 2(+a)=Dkx 2(z+x)=ky 2(x+y)=kz また,xキ0,_yキ0,zキ0 である。 の+2+3 より, 4(x+y+z)-k(x+y+z)=0 2) 3 b+ (分母)+0 各辺の辺々を加え。 移項して整理す。 x+y+z で両 割ってはいけな。 4(x+y+z)=k(x+y+z) だから, (x+y+z)(4-k)=0 x+y+z=0 または 4-k=0 y+z=-x したがって, (i)x+y+z=0のとき, これを①に代入して, xキ0 より, (i) 4-k=0 のとき, このとき, 0, 2, ③を解くと, これは,xキ0, yキ0, zキ0 を満たすすべての x, y, 2について成り立つ。 よって, (i), (i)より, 求める値は, とに注意 (式) (この段階では -2x=kx k=-2 x+y+z=0 k=4 の可能性がある x=y=z -2, 4 Focus +y+z など文字を含む式では割らずに因数分解 注) b 3ー&のとき, bx+qy+rzキ0 ならば, patqb+rC _1e であるこ a=kx, b=ky, c=kz を代入するとわかる.(加比の理,p.57練習 252参に このことを用いると, 例題26は次のように求めることもできる。 x y px+qy+rz x+y+zキ0 のとき, 2(y+z)+2(z+x)+2(x+y)_4(x+y+z)。 x+y+z k= x+y+z x+y+z=0 のとき, y+z=-x より, k=2(y+z)_ニ2x_-2 x x 東習 26 a+b b+c_c+a C a b y_y+z x- 2+7x 2 X

回答

✨ ベストアンサー ✨

1=1
2=2
3=3
これはいずれも正しい式です。これらの左辺と右辺のそれぞれを足し合わせた式
1+2+3=1+2+3
つまり
6=6
も正しい式になります。

本問は文字式でありかつそれぞれの式の左辺・右辺が異なるため、足し合わせてもよいことに違和感を覚えるかもしれませんが、6=6の場合同様成り立ちます。これは等式全般のルールです。

ですから、本問においても当然このルールは成り立たざるを得ません。逆に、等式のルールを成り立たせるような文字の値を決めていると考えるとよいかもしれません。

Sa

ありがとうございます。等式全般のルールとして理解しようと努めます。
丁寧な解説ありがとうございました。

この回答にコメントする
疑問は解決しましたか?