数学
高校生

176 (1)(3)(5)
177 (1)(3)
178 (1)(3)(5)

分かるとこだけでいいので解説お願いします🙏

182 第6章 数列と極限 問題176 次の極限値を求めよ. 3n n-3 (2) lim n→o 2n+1 n→0 4n -+5 n? (4) lim n→o 2-n? n-1 +2 (3) lim n→0 n2 +1 (5) lim n→ n3 + n? - 5m +1 4n - 3n - 7 2n3 - 3n + 1 (6) lim 5n3 - n+3 n→0 問題177 次の極限値を求めよ. 7" - 5% 27+2 - 52+1 (2) lim (3) lim n→ 82 n→0 37 - 57 37 +(-5) n→0 問題178 次の極限値を求めよ. 5 5 (2) lim n→0 Vn?-n-n n→0 Vn? +n-n 5 (3) lim Vn? - n+n (4) lim (Vn+1I- Vm) n→0 n→0 (5) lim (V4n? +n-2n) Vn+2- Vn (6) lim n→0 n→8 vn+1- yn 問題179 次の極限値を求めよ. COS no 1 2、2 (2) lim NT () Sin° nd sin (3) lim n→0 n /n n→0 問題 180 次の極限値を求めよ. 3 n→○ (1) lim {log2(4n + 3) - log2(+ 1)} (2) lim 1+2+…+n m→0
問題175 (1) 収束(極限値は 3). (2) +0に発散.(3) -00に発散.(4) 振動. (VR- VR+ 1) k=1 n VR- VE+1 =- {(Vi-V2) + (V2-v3) +(V3-V4) ++ (Vn-vn+1)} =- (VI- Vn+1) = Vn+1- VI= Vn+1-1. k=1 k=1 基本問題 6.3 (5) 振動、 3 3 3 3n 問題176 (1) lim lim n→0 4 + 5 4+0 4° n→0 4n +5 n 3 -3 1 1-0 1 n n lim (2) lim n→ 2n -+ 1 1 n→0 2 + 2+0 2° n 1 0-0 =0. 1+0 n -1 (3) lim n→○ n +1 n lim n 三 1 n→0 1 + n? n? (4) lim n→0 2 2 +2 1+ lim 1+0 n2 =-1. ニ n? 2 0-1 n→0 n2 4n3 3n - 7 4 3 (5) lim n→o m3 + n? lim n→0 1 + 4-0 = 4. 1+0 5n + 1 1 D 5 1 2n° (6) lim n→o 5n3 n n3 3n +1 2 lim n→0 5 ニ n +3 3 n3 5° n2 7" 問題177 (1) lim 5% n lim 87 n→0 = 0. n→0 ニ 1 27+2 (2) lim 3n 57+1 22.2" lim 5.57 n→0 57 n 5 lim n→0 37 三 0-5 5% n ミ n→0 ミ5. 0-1 (3) lim 37 n+1 37 +(-5) 37 lim n→0 n→0 37 +(-5) 0+5 lim m→0 三 0+1 ミ 問題178 (1) lim 5 Vn? + n n→0 lim 5(Vn2 + n + n) 三 n n→0 (Vn? + n 2)(Vn? + n+ n) II II II
問題の解答 5(Vn? + n + n) lim (n? + n) - n? Vn? + n + n 275 =5 lim n→0 n→0 m ( )-(り Vn? + n +1 =5 lim :5 lim n2 + n +1 n→0 n→0 n? 1 1+ =5 lim =5.2= 10. n→0 n 5 5(Vn? - n + n) (Vn2 Vn? (2) lim n→0 Vn? lim n - n m→0 n)(Vn? - n+ n) 5(Vn? n+ n) n) - n? Vn? = lim =5 lim - n +n (n? n→0 n→0 -n =-5 lim n n? - n =-5 lim n→0 n n? n→0 = -5 lim 1 +1 n = -5.2= -10. n→0 5(Vn? - n - n+ n)(Vn? -n- 5 (3) lim n→ Vn? = lim (Vn? n) n + n n→0 5(Vn? n) ロ-) /n? = lim =-5 lim n→0 -n n→0 n =-5 lim = -5.0=D0. -1 n→0 n (4) lim (Vn+1- vm) = (Vn+1-Vm)(Vn+I+Vn) Vn+I+ Vm = lim n→0 n→0 1 = 0. lim Vn+I+ Vn (V4n? +n-2rn) (V4n? +n+2n) lim Vn+I+ Vn n→0 n→0 (5) lim (V4n2+n-2n) = lim V4n? + n+ 2n n→0 n→0 n = lim = lim 4n2+n+2n n→0 = lim V4n2 + n+ 2n n→0 V4n? + n+ 2n 1 n→0 1 1 lim 1 V4+2 = lim V4++2 n→0 lim 4nn +2 三 n→0 4n2+n + 2 n→0 11 4 Vn + 2 Vn Vn + 1 (Vn + 2-V/n) (Vn + 2 + vn)(Vn + I+vm) = lim (Vn + I-yn)(Vn +1+ Vn)(Vn+2+ Vn) (6) lim n→○

回答

まだ回答がありません。

疑問は解決しましたか?