Mathematics
高中
已解決
この問題の(2)の赤線の部分なのですが、条件付き確率なので公式に入れて求めてみたら値が違うものになりました。多分矢印で書いた方の求め方なのですが、どうしてそうなるのかを教えていただきたいです。
V
基本 例題 53 確率の乗法定理 (1)
00000
当たりくじ4本を含む12本のくじがある。 引いたくじはもとに戻さないも
のとして,次の確率を求めよ。
(1) A,Bの2人がこの順に1本ずつ引くとき, AもBも当たる確率
(2) A,B,Cの3人がこの順に1本ずつ引くとき,Cだけがはずれる確率
p.340 基本事項 2
CHART & SOLUTION
Hom
....
もとに戻さないでくじを引く場合の確率 乗法定理を適用 ・・・・・・ 0
引いたくじはもとに戻さないから,前に引いた人の「当たり」 または 「はずれ」により、次
に引く人の「当たり」 または 「はずれ」 の確率が変わってくる。
解答
A, B, C が当たる事象をそれぞれ A, B, C とする。
① (1) 求める確率は
P(A∩B)=P(A)PA(B)
Aが当たる確率 P(A) は
P(A)=4
12
Aが当たったとき, 残りのくじは11本で当たりくじ3本
を含むから,条件付き確率 PA (B) は
よって
PA(B)=-
3
11
P(A∩B)=1/23
=
3
11 11
I C
確率の乗法定理。
当たりくじは3本。
(2) 求める確率は P(A∩BNC)=P(A∩B) PanB (C)
条件付き確率 PanB(C) は, A, B が当たったとして,次に
Cがはずれるときの確率であるから
8
PanB (C)=-
10
よって, (1) から
◆ A, B は当たる。
←このときCは、残りのく
じが10本で,当たりく
じを2本含むものから
くじを引く。
P(A∩B∩C)=P(A∩B)Pana(C)=1/1×20
4
55
P(A∩B)=1/1
INFORMATION
確率の乗法定理の解答について
PAOB()=
P(c)
PANB
8C
8
1001
10
8.
8
186 + 1 = 1/6 × 11 =
10
10
88
10
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8929
116
数学ⅠA公式集
5652
19
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4550
11
詳説【数学Ⅰ】第三章 図形と計量(後半)~正弦・余弦定理~
3530
10
気づきませんでした…。
ありがとうございます。