Mathematics
高中
已解決

なぜ1<x<4と4≦x<7と場合分けするんですか?

2 正弦定理と余弦定理 241 例題 124 三角形の成立条件 **** 3辺の長さが3, 4, xである三角形について,次の問いに答えよ. (1)xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ. 3 考え方 (1) たとえば, 3辺の長さが3, 4, 9では、 4 で三角形ができない. 9 AST 三角形ができるためには,a+b>c が成り立つ必要がある. (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する. (辺と角の大小関係は p.425 参照) 解答(1)3辺の長さが3,4,xの三角形が存在する条件は, [3+4>x x+3>4 x+4>3 C a,b,c を3辺の長 さとするならa>0, これより, 1<b>0c0 が必要 (2)(i)1<x<4 のとき,最大の角は長さが4の辺の対 角である. それを とすると, α <90°となるため には, cosa= x2+32-42 2.x.3 >0x2+32-40 これより, x<-√7.7x JEJEVUJI これと 1 <x<4より,√7<x<4 (ii) 4≦x<7 のとき,最大の角は長さがの辺の対 角である。 それをβ とすると, β <90° となるため には, cos β= 32+42-x2 2・3・4 ->0 32+42x20 これより, 5<x<5 大 これと 4≦x<7より, 4≦x<5 であるはずだが,こ れらは,三角形の成 立条件の3つの式か ら導かれる.(次ペ ージのColumn 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇔ b2+c>d を用いてもよい。 よって, (i), (ii)より, √7 <x<5

解答

✨ 最佳解答 ✨

「考え方」にある通り、
鋭角三角形⇔最大角が鋭角
であり
最大角の対辺が最大辺
なので、最大辺はどれか、がポイントです
3より4が大きいのは確かなので、
4とxのどちらが大きいかが場合分けのポイントです
よってx<4((1)の結果と合わせて1<x<4)
と4≦x((1)の結果と合わせて4≦x<7)
に場合分けします

delta

ありがとうございます
理解できました

留言
您的問題解決了嗎?