Mathematics
高中

26.1
この記述でも問題ないですよね??

0 00 基本例題26 不等式の証明 [A-B>0 の利用など] ①①①①① 次のことを証明せよ。 (1) a>b>0,c>d>0のとき ! (2) a>b>0のとき LUND a > 1,6>2のとき (3) 指針 解答 (1) a>b,c>0から c>d, b>0から したがって 別解a> b,c> 0 から ac>bc したがって ac-bdbc-bd=b(c-d) [] b>0であり,c>dよりc-d>0であるから b(c-d)>0 ac-bd>0 すなわち ac>bd (2) (左辺) (右辺) の式で通分する。 (3) (左辺) (右辺) の式で因数分解する。 【CHART 大小比較は差を作る よって 不等式 A>B を証明するには, A-B>0であることを示す。あること A>B 20 ↓ 差 A-B>0 ac>bc bc> bd ac>bd a b a(1+b)−b(1+a) 1+a 1+6 (1+a)(1+b) = したがって ac>bd a-b (1+a)(1+6) a 1+a a 1+a b 1+6 (zd+xp a-b (2) (1+a)(1+b) a>b>0より, a-b> 0, 1+α> 0, 1+b>0であるから >O ab+2>2a+b bob 1+6 = A≤³y0[+xa (1) 0=8-40=y6-1 (-vE) (r0ItxDx) -²₂01+xx0-³x= したがって (3) ab+2-(2a+b)=a(b-2)-(6-2)=(a-1)(b-2) a> 1,6>2より,α-1> 0, 6-2>0であるから (a-1)(b-2)>0 ab+2>2a+b p.47 基本事項 ① (40+8+ -20)=²xEXE=E (1) 差をとるよりも, 大小 係の基本性質を利用した が示しやすい。 ARS <A> B,B>C⇒A>C kde th HROUVIER この説明を忘れずに。 (左辺) (右辺) > 0 立剣低 木の方 (+) (+) (+) ① (zotud +20) ≤('s+|+x)(²+8+) @ αに着目して整理する。 00 この説明を忘れずに。 左辺) (右辺) > 0
例題26 1) a > b ƒ ( 1 (= cafe acrbc-0 両辺にDをかけると cad sy bc z bd D. FY ac > bc > bd (7= 1² Jac > bd 1 2 #

解答

尚無回答

您的問題解決了嗎?