y=aath
6 ある高校の生徒会では,文化祭で Tシャツを販売し,その利益をボランティア団体に寄
付する企画を考えている。生徒会執行部としては,できるだけ利益が多くなるように価
を決定したい。価格は「製作費用」と「見込まれる販売数」をもとに決めるが, 販売時に
り銭の処理で手間取らないよう50の倍数の金額(単位は円) とする。
(1) (売上額)=(Tシャツ1枚の価格)×(販売数)なので, Tシャツ1枚の価格をx円,こ
のときの販売数をy枚とし,xとyの関係を調べることにした。
生徒会執行部が実施したアンケート調査の結果、価格が2000円では50枚, 500円でに
200枚売れることがわかり, さらに500x2500 の範囲では, 販売数は価格xの
250
アイ-1
x+ オカキである。
ウエ
次関数とみなせることもわかった。このとき、y=
以下,500≦x≦2500 の範囲で考える。
(2) Tシャツ1枚の価格をx円としたときの売上額をS(x) とするとき, 売上額S(x) が
最大になるxの値を求めよ。クケコサ
1250
(3) Tシャツ1枚当たりの「製作費用」 が 400円の業者に 120枚を依頼することにした
とき, 利益が最大になる Tシャツ1枚の価格を求めよ。 シスセソ 円
1300
(1) y=axthに代入して、
2000ath=50①
500 ath=200②
2000ath280
- 20000+42=800
=250を②に代入して5000=-50
したがって、y=-x+250
f(x)=天y=x(1+250)
+250x
- to (x²2500x)
2
こ
-36=-750
h=250
a=-to
= -√ {(2-1250)²-(1250)²}
-- (2-1250)² + +6. (1250)374
1/6
よって、大=1250は500x2500にあるので、
あてはまる。